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Every effort has been made to ensure that the
information and questions in this book reflect the
intended depth and complexity of the key
knowledge outlined in the current study design for
this subject.

ERRATA & CLARIFICATIONS

Although the information in this book has been
presented with all due care, TSFX does not
warrant or represent that this publication is free
from errors or omission, or that it is exhaustive.

The published information is provided on an "as
is" basis with no guarantees of completeness,
relevancy, accuracy or usefulness. Readers are
responsible for making their own assessment of
the printed material and should independently
verify the accuracy, validity, relevance and
completeness of the information. TSFX assumes
no responsibility or liability for any loss, damage,
cost or expense you might incur as a result of any
errors, inaccuracies or omissions in this
publication, or for the results obtained from the
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THE POWER OF ART

Engaging with art is essential to the human
experience. Almost as soon as motor skills are
developed, children communicate through artistic
expression. Throughout each stage of our lives,
art plays different and important roles. The arts
have the power to bring joy, stir up emotions and
influence our behaviour. Art crosses all divides. It
breaks down cultural, social and economic
barriers and plays a big role in how humans see
and interact with others, and the world in general.

Art decreases stress levels and improves mental
health and well-being, particularly in patients
suffering chronic or terminal illness. It has the
power to educate people and convey meaning in
a way that can be appreciated by every person.
Furthermore, it gives us the opportunity to travel
through time and learn from the beliefs, dreams,
habits, thoughts, culture and lives of people in
different places and times.

The arts also challenge us with different points of
view, encourages communication, promotes
stronger critical thinking and problem-solving
skills and unlocks the potential of the human
mind. It is also closely linked to academic
achievement, civic engagement and social and
emotional development.

The benefits of art are significant and undeniable.
Use it to benefit both your mental and physical

health as you journey through your VCE.
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LOGARITHMS

The power in the expression y =a” is also known as the logarithm of y to the base a.
i.e. A logarithm is the power to which a number must be raised in order to get some other

number.

Therefore, any indicial expression may be written in the corresponding logarithmic form by

applying the rule:
If log, y=x then a*=y, ae R"\{l}

100 =10 reads as “2 is the logarithm of 100 to the base 10”.

Note:

. a represents the base (ae R" \{1}).

o x represents the power/logarithm.
o y represents the basic numeral.

For Example: 3*=81 < log,81=4

LOGARITHM LAWS

The following rules can only be applied if:

. Logarithms are written to the same base.

. There is no number in front of a logarithmic term.

Logarithm Law Example
log, m+log, n=1log,(mxn) log, 5+1log, 3 =log, (5x3)=1log, (15)
m 5
log, m—log, n= loga(—j log, 5—log, 3 =log, (Ej
n
plog, (m)=1log,(m)" 3log, 5=log, 5’ =log, 125
1 1
log, —=log,1-log, n=-log, n log,9 = —log, 5
n

© TSFX: VCE (2023 — 2027) Unit 3 Head Start Lectures — Mathematical Methods

Page 236



Logarithm Law Example
1 1 -3

log,| — |=—x logg| — | =log/(8 ):—3log8(8):—3
a 8

log,a=1 log, 6=1

log, a® =x log,3" =x

log,1=0 log,1=0

SIMPLIFYING LOGARITHMIC EXPRESSIONS

Step 1: Write all terms as logarithmic expressions.

Step 2: Remove numbers in front of logarithmic expressions by converting them into
powers.

Step 3: Apply the appropriate laws and simplify.

QUESTION 6
Simplify the following expressions stating your answer correct to 3 decimal places.

(@) log;p20+ loglo[gj —log;y 7 = loglo(ZOX%j —logo 7

= loglo 25 - loglo 7

25
=log,, 7

(b) 3log; 6—2log;18 =1log; 6° —log; 182

63
= log, | >
g3 182 ]

SWED
8324

2
=log,| —
g3 3j
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(c) 3log;2x+log,2

QUESTION 7
Write the following expressions as the sums and differences of their simplest forms.

9x*
(@) log;| —
Og[ﬁJ

X +y

(b) log, ((xz-'- y)22 j
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SOLVING LOGARITHMIC EQUATIONS

Step 1: Write all terms as logarithmic expressions.

Convert numbers into logarithmic expressions by applying the rule: log, a =1

Step 2: Remove numbers in front of logarithmic expressions by converting them
into powers on basic numerals.

Step 3: Use logarithmic laws to reduce the given equation to as few terms as possible.

Step 4: Solve the equation and then verify that the calculated solutions are valid
(substitute the calculated values into the given equation).

SOLUTION STRATEGIES

IF THE EQUATION CAN BE REDUCED TO 2 TERMS

(a) Write each term on either side of the equality sign and solve. You will typically obtain
one of the following equation formats:

1. log, A =value

2. log,A=log,®

i.e. A logarithmic expression equal to a number.

Write the logarithmic equation in its corresponding indicial form
and then solve the expression using the techniques for solving
indicial equations.

For example: Solve log,5=x
3* =5
log,, 3" =log,, 5
xlog,,3=1og,, 5

= log,, 5

=1.465 to 3 decimal places
log,, 3

i.e. Two logarithmic expressions with the same base but
different base numerals.

Write each term on either side of the equality (one on each
side of the equality sign) and equate base numerals.

For example: Solve log, 2x = logg(x +1)
loge 2x = logg(x +1)

S 2x=x+1
Sx=1

© TSFX: VCE (2023 — 2027)
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3. log,A=log,® i.e. Two logarithmic expressions with different bases.
Apply the change of base rule and solve.

For example: Solve log, x =log, 2

4. log, A= function i.e. A logarithmic expression equal to the equation a

function other than a log eg. trigonometric, polynomial
etc.

These expressions must be solved using technology.

For example: log,,(6x—1)=sin(cos x)

OTHER SOLUTION STRATEGIES

(a) If the given equation consists of three terms; two of which carry powers (where one
power is double the other), write the given equation as a quadratic expression.

For example: (log,, x)* —2log,, x+1=0

(b) Bring all terms to one side of the equation, factorise and apply the Null Factor Law.

For example: (log,, x+2)(log,, x+1)=0

CHANGE OF BASE RULE

A logarithmic expression whose base is not equal to e or 10 may be evaluated
using technology, after applying the change of base rule.

1
To change the base from b to a we apply the rule: log, x = loga Z .
0g,
log,, x
Therefore, to change the base from b to 10 we apply the rule: log, x :ﬁ'
08
log,, 7
For example: log, 7=—"—=2.81(to 2 dp)
log,,
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IMPORTANT NOTES

o The logarithm of a zero or negative number is undefined. Therefore, after solving
logarithmic equations, substitute solutions into the original equation to ensure that no
solution obtained can render the logarithm undefined.

o  Logarithmic functions of the form y = log,(x —b) are only defined when (x—5)>0.

. If asked to solve an inequality — proceed using an equality sign. Once solutions have
been obtained, sketch a graph and use logic to determine the appropriate answer.

) Note: When an inequality is multiplied or divided by a negative number, the direction of
the inequality must be changed. Remember that the logarithm of a number that lies
between 0 and 1 is a negative.

QUESTION 8
Solve the following equations for x.

(@) log, 256=4

(b) log,16=x-1
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(c) 2Inx=In(5+4x)

(d) log,(x—3)+log, x=1

) 2(log, x) —7log, x=4
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QUESTION 9
Simplify the following expressions.

(@) (log;9)(log,1024)

Let log,9=x Let log,1024=y
3"=9 4" =1024
3 =3 4 =4
x=2 y=5 Answer is 2x5=10
log, 27
log, 81
QUESTION 10

Consider the function f:{¢t:t<a} - R, f(t)=-5log, (4—at), where a represents a
positive real number value. The largest value of ¢ for which f(¢) is defined is:

A 4
B %
4
c _4
4
p 2
a
E 2
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QUESTION 11
Given that log, 5+2log,(2x+1)=1log, 45 then the value(s) of x which satisfy this

equation are:

A 2

B 1,2

c -2, 1

D 01

E 1
QUESTION 12

Show that 3log, 6 = 2log,18 + x can be written as x = log, (3] Hence find the value of a.
a
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QUESTION 13

If 2log,, x =log,, 9+8 then x is equal to

V17
N17m

3m*

8.5
+3m*

moo © »

QUESTION 14

If log, x =1log,(x—1)+b then x is equal to

A 1-¢
1

8 e’ —1

C IOgeTl
1

b 1-¢€”
o

= e’ —1
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QUESTION 15
log.a +§. State the values of ¢ and b .

log, 63 =3 —2x can be written in the form x =
2log, b

QUESTION 16
Find the point(s) of intersection of the curves with equations f(x)=1og, e

g(x)=log, @ |

2z+4 and
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SOLVING INDICIAL EQUATIONS

USING LOGARITHMS

Step 1: Apply the appropriate index laws to reduce both sides of the equation to one term.
Step 2: Take logig or loge of both sides of the equation.
Step 3: Solve for the required variable.

QUESTION 17

Solve 2" =0.5 for x using logarithms.

Solution

2°=05

Take log,, of both sides: log,,2* =log,, 0.5

As log,(m)" = plog,(m)
xlog,, 2=1og,, 0.5

log,, 0.5
X=—
log,, 2
_—0.301
0.301
x=-1

If no particular method was specified, the solution could be obtained using the CAS

(Solve 2" =0.5).

QUESTION 18
Solve 4"** =14
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QUESTION 19
Solve ¢ =2¢".

QUESTION 20
For what values of x is 0.5 >3 ? State your answer correct to 3 decimal places.
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QUESTION 21

Write 5S¢ =7e™ in its equivalent logarithmic form. Hence find a solution for ¢ stating your
answer correct to 4 decimal places.

Solution

Take log, of both sides of the equation:

5
log | = |=log ™
(3]

log, (%j =-5tlog, e

As log,e=1:

5
log | — |=-5¢
18

t= —lloge (2) =0.0673
5 7

If no particular method was specified, the solution could be obtained using the CAS
(Solve 5¢™ =7e™).
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THE EXPONENTIAL GRAPH

General Equation: y=a", a>1

The Y-interceptis (0,1).

The horizontal asymptote is y =0.
The domainis R.

The rangeis R".

The general shape of an exponential function depends upon the value of the base a.

When a > 1 y=10"

As the value of the base “a ” increases:

e The graph rises more steeply for positive values of x.
e The curve moves closer to the X-axis for negative values of x.

When 0 < a < 1: Graphs are obtained by reflecting curves with the reciprocal base in

the Y-axis.

For example: y = [%j =3 =3"

1 X
Therefore, the graph of y = (5) is obtained by reflecting y = 3" in the Y-axis.

© TSFX: VCE (2023 — 2027) Unit 3 Head Start Lectures — Mathematical Methods

Page 250




General Curve Shapes:

y=e
y=e" y=e'
4
2
/ 2
A -1 0 1 2 3
2 -2 -1 0 1 2 3
y=-e

TRANSFORMATIONS INVOLVING
EXPONENTIAL FUNCTIONS

Standard Form: y=Aa""" +k, a>0

Dilation of factor |A|
from the X axis

A

Dilation of factor from the Y axis

n

Reflection
in the X axis

Vertical Translation
f(x)= - 'o :) If k> 0 = Move up i
‘//////// If k < 0 = Move down
If n is —ve reflect

in the Y axis

Horizontal Translation
Let = 0 solve for x.

If answer is positive = Move right
If answer is negative = Move left
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QUESTION 22

State the transformations of y =e" required to produce the graph of y=2¢>* —5.
Dilation from the Y axis Dilation from the X axis
OR Parallel to the X axis OR Parallel to the Y axis

S(x) = f(nx) f(x) = af(x)

Factor: Factor:

Reflection in the Y axis: Reflection in the X axis:

S(x) = f(=x) S(xX)—=>—=f(x)

Yes No Yes No

Translation parallel to the X axis Translation parallel to the Y axis

0= 7= )= f)+k

Number of Units: Number of Units:

-ve direction  +ve direction -ve direction  +ve direction

QUESTION 23
1
The function f(x)=e" is reflected in the X axis and dilated by a scale factor 3 from the

Y axis. The equation of the transformed curve is:

A f)=—e
B ()=
c fw=-e”
D f(m=c
E f=—e
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QUESTION 24
Which of the following best represents the graph of y = ae®™ +c, where a >0, k>0, c¢<0?

A
v

A
v

A
v
A
v

CAS Application

Let a =2, k=3,c=—4 and sketch y =2¢”* —4 on the calculator, The diagram that best fits
the graph on the CAS is C.
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QUESTION 25
Sketch the graph of y =2e
asymptote.

3-2x

Solution

X intercepts — Let y=0:

277 —5=0
287 =5
63—2x — 2
2
5
1 3-2x =1 ~
o, —tos 3]

5
3-2x=log,| -
retog ]

QUESTION 26

—5 stating the axial intercepts and the equation of the

Y intercepts — Let x=0:

y=2¢"" =5
y=2¢ -5 ie. (0,2¢°-5)

20

Sketch the graph of y =2x10°* —20 showing the equations of any asymptotes as well as

the axial intercepts.
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QUESTION 27
Graph A is the graph of y =a(3)" and Graph B is the graph of y =5b(4)" and a,b>0
and b > a . Which of the following statements is correct?

Both Graphs A and B rise at the same rate.

Graph A rises at a faster rate than Graph B.

Graph B rises at a faster rate than Graph A.

The Y intercept of Graph A is above the Y intercept of Graph B when b >a.
The equation of the X asymptote is dependent on the values of ¢ and b .

moow>

FINDING EQUATIONS DESCRIBING
EXPONENTIAL FUNCTIONS

y=A4a""" +k, a>0
Step 1: Use features of the graph to solve for one unknown.
For Example: The asymptote represents the vertical translation (k).

Step 2: Substitute given points into the equation describing the curve and solve for the
remaining unknowns.

Note:

o If the horizontal asymptote is located along the X axis, no vertical translation exists
ie. k=0.

e The Y intercept is determined by the horizontal and vertical translations, together with
the dilation from the X axis. Therefore, never use the Y intercept to determine the
equation of the asymptote unless no dilations and horizontal translations exist.
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QUESTION 28
The graph whose equation is y = Ae* + B, where 4 and B are constants, is shown below.

The values of 4 and B respectively are: Sy
A A=1 B=-2 _ : 1 :
B 4=-2 B=1  eeeaaa- L1 I
C Ad=-1 B=-1 T~ .
D A=-3 B=1 0 2
E A=-1 B=-2 : -t

\—2

QUESTION 29
Find the values of 4 and k if the general equation of the graph shown is y = 4¢*.
Give your answer correct to 2 decimal places.
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QUESTION 30
The graph of the function f:R — R, f(¢t)=(bt+0.8)e " +a is shown below.

-10

This graph has an asymptote at y =1 and passes through the point (-3, —1086).

(a) Find the value of a.

(b) Show that b is equal to 5.70.
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THE LOGARITHMIC GRAPH
The logarithmic curve is a reflection of the exponential graph in the line y = x.
General Equation: y =log,(x)

e The X-intercept occurs at (1, 0).
e The vertical asymptote is x =0.
e The domainis R".

e Therangeis R.

Logarithmic graphs always have a vertical asymptote.

The general shape of a logarithmic function depends upon the value of the base a .

When a > 1

y=log, (x)

| ////////// y=log, (x)

0 1 2 3

-3

As the value of “a ” increases in magnitude:

e The graph of y =log,(x) rises more steeply for values of x less than one.
e The graph rises less significantly for values of x that are greater than one.

WhenO<a<1:

These graphs are obtained by reflecting the graphs of logarithmic functions whose base is
the reciprocal in the X-axis.

For example: y= logy (x)
2

@ .
(2_1 )y =X
27 =x

-y =log, x
y=—log, x which is the reflection of y = logy (x) in the X axis.
2
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GENERAL CURVE SHAPES

A fi
y=1log,(—x) i y =log, (x) i y=log, (x)
(-1,0) E A, 0) E a, 0) ....................
| | y=—log, ()
\ !
SPECIAL GRAPHS
2 y= loge (2)(')
_—— y=log,(x)
y=log,(x*)
/ y =log, (x)
3 2 1 0 1 5 3
)

Note: log, (x*)=2log,(x) only for x>0

© TSFX: VCE (2023 — 2027) Unit 3 Head Start Lectures — Mathematical Methods Page 259





