UNIT 3 SPECIALIST MATHEMATICS

BOOK 1

Complex Numbers

The Imaginary Number
Operations Involving Imaginary Numbers
Properties of Complex Numbers
Equality
Addition and Subtraction
Multiplication
Complex Conjugates
Magnitude
The Multiplicative Inverse
Division of Complex Numbers

The Complex Number Plane

Geometrical Interpretation of Subtraction
Polar Form
Converting Cartesian Forms into Polar Form
Converting the Polar Form into Cartesian Form
Multiplication and Division in Polar Form
Geometrical Interpretation of Multiplication and Division

De Moivre's Theorem

Solving Equations in the Form $z^{n}=a$ Using De Moivre's Theorem
Finding nth Roots of a Complex Number
The nth Roots of Unity
Finding Square Roots in Exact Cartesian Form

Polynomials Over C

The Fundamental Theorem of Algebra
The Factor Theorem
The Conjugate Root Theorem

Factors Over C of Polynomials

Factorising Quadratics Over C
Factorising Cubics Over C
Factorising Polynomials of Degree Greater Than 3 Over C

Solution Over C of Polynomial Equations

Relations and Regions in the Complex Plane

Relations in the Complex Plane

Restrictions on Magnitude
Solving Questions Involving Restrictions on Magnitude
Rays and Lines
Common Types of Relations - Summary
Regions in the Complex Plane
Common Types of Regions - Summary

BOOK 2 - VECTORS

Vectors

Vector Notation
The Negative Vector
Position Vectors
Equality of Vectors
Addition of Vectors
The Identity Vector
Subtraction of Vectors
Multiplication of a Vector by a Scalar
Unit Vectors (Definition)
Vectors in 3-Dimensional Space
The Magnitude (Size) of a Vector
The Magnitude (Size) of Vectors Multiplied by Scalars
Vector Algebra in Component Form
Vector Equivalence

The Distance Between Two Vectors

Unit Vectors

Creating Unit Vectors

Direction Cosines

The Scalar Product of Two Vectors

Properties of the Scalar Product
The Angle Between Vectors vs The Dot Product
The Scalar Product of Vectors in Component Form
Angles Between Vectors

Resolving Vectors

Linear Projections
Identifying Projections
The Scalar Resolute/Projection
Perpendicular Scalar Resolutes
Vector Resolutes
Perpendicular Vector Resolutes

Linear Dependence and Independence

Vector Proofs

A General Approach to Vector Proofs
Proofs Involving Circles
Proofs Involving Lines
Proofs Involving Pyramids
Proofs Involving Quadrilaterals
Proofs Involving Parallelograms
Proofs Involving Trapezia
Proofs Involving Triangles

BOOK 3 - CALCULUSI

Differential Calculus

Formula List
The Derivative of $\tan (k x)$ and $\cot (k x)$
The Second Derivative
Applications of the Second Derivative
Implicit Differentiation
Derivatives of Inverse Circular Functions

Integral Calculus - Techniques in Anti-Differentiation

Definition
Basic Properties
Standard Anti-Derivatives
Linear Substitution
The 'Reverse Chain Rule'
Anti-Derivatives of $\frac{1}{\sqrt{a^{2}-x^{2}}}$ and $\frac{1}{a^{2}+x^{2}}$

Anti-Derivatives of $\sin ^{2}(k x)$ and $\cos ^{2}(k x)$

Anti-Derivatives of odd powers of $\sin (k x)$ and $\cos (k x)$
Anti-Derivatives of $\tan ^{n}(k x)$ and $\cot ^{m}(k x)$
Anti-Derivatives of Expressions of the Form $\sin ^{m}(k x) \cos ^{n}(k x)$
Partial Fraction Decomposition
Rational Functions
$N(x)=$ Polynomial of Degree 2 or Higher
Anti-Derivatives of Rational Functions with Quadratic Denominators
Anti-Differentiation by Recognition
The Relationship between the Graph of a Function and the Graph of its Anti-Derivative

```
Integral Calculus - Applications in Integration
Definite Integrals
Basic Properties
The Area Under a Curve
The Area Between a Curve and the Y Axis
The Area Between Two Curves
Volumes of Solids of Revolution
The Volume Between Two Curves
```

Lengths of Curves in the Plane
The Length of a Parametric Curve

BOOK 4

Area of Study 1: Functions and Graphs

Section 1: Rational Power Functions of Low Degree

Asymptotes
Sketching Rational Functions
Graphs of Power Functions
Graphing Rational Functions Using the Addition of Ordinates Graphing Rational Functions Using Multiplication of Ordinates
Graphing Rational Functions Using the Key Features on a Graph
Graphing Rational Functions Using the Reciprocal Theory

Graphing Rational Functions Using Partial Fractions Sketching Rational Functions - Executive Summary

Section 2: Conics

Equations Describing Conics
The Circle
The Ellipse
Standard Form of an Ellipse
Sketching Graphs of Ellipses
Expanded Form of an Ellipse
Writing Equations of Ellipses
The Non-Rectangular Hyperbola
Standard Form of the Non-Rectangular Hyperbola (Centre (0, 0))
Sketching the Hyperbola
Standard Form of the Non-Rectangular Hyperbola (Centre (h, k))
The Conjugate Hyperbola
Important Features of Hyperbolae
Expanded Form of a Hyperbola
Writing Equations of Hyperbolae

Section 3: The Absolute Value (Modulus) Function

Properties of the Modulus Function
Converting a Modulus Inequation to an Interval and Visa Versa
Graphing Modulus Functions
The Graph of $y=|x|$
The Graph of $y=|f(x)|$
Sketching Modulus Functions in the Form $y=|f(x)|$
Sketching Modulus Functions in the Form $y=a|f(x-h)|+k$
Modulus Functions in the Form $y=f(|x|)$
Sketching Modulus Functions in the Form $y=f(|x|)$
Writing Modulus Functions as Hybrid Functions
Sketching Modulus Functions Expressed as Hybrid Functions
Solving Modulus Equations and Inequations
The Algebraic Approach
The Graphical \& Algebraic Approach
Solving Equations in the Form $|x|=|b|$

Section 4: Circular (Trigonometric) Functions

Reciprocal Trigonometric Functions
Graphs of Reciprocal Trigonometric Functions
The Fundamental Identities
The Addition Theorems
The Double Angle Formulae
Graphs of Inverse Trigonometric Functions
Maximal Domains and Ranges
Transformations of Functions - Summary

