UNIT 1 CHEMISTRY

BOOK1

How Can the Diversity of Materials Be Explained? AOS 1: How Can the Knowledge of Elements Explain the Properties of Matter? AOS 2: How Can the Versatility of Non-Metals Be Explained? AOS 3: Research Investigation

AOS 1: HOW CAN KNOWLEDGE OF ELEMENTS EXPLAIN THE PROPERTIES OF MATTER?

Section 1: Atomic Structure States of Matter

Physical Classification of Matter Chemical Classification of Matter

Relative and Absolute Sizes of Particles

Atoms and their Structure

Elements and Compounds

Elements Atomic Elements Molecular Elements Elemental Lattices Compounds Molecular Compounds Macromolecules Ionic Compounds

Defining Atoms

Atomic Nuclei Electron Arrangement Atomic Number Mass Number Isotopic Symbols Isotopes

Electron Configuration

Electronic Energy Levels Shells Subshells Orbitals Shapes of Orbitals Filling Orbitals Electron Configuration of Atoms Electron Configuration – Exceptions

Evidence for Energy Levels

Emission Spectra Electron Configurations of Atoms in Excited States Ionisation Energies

Section 2: The Modern Periodic Table

The Modern Periodic Table

A Periodic Table of the Elements Groups

Periods Blocks

Trends in the Periodic Table

The Shielding Effect Effective Nuclear Charge Trends in Atomic Radii Trends in Metallic Nature Trends in Electronegativity Trends in First Ionisation Energies Other Trends in the Periodic Table Trends in Reactivity Patterns in Compounds Patterns in Oxides Patterns in Hydrides Summary of Trends

Development of the Periodic Table

Chemical Bonding

Section 3: Metals

Metals

Properties of Metals Metallic Structure Metallic Bonding Model Explaining Metal Properties Electrical Conductivity Heat Conductivity Lustre Melting Points and Boiling Points Malleability and Ductility Hardness Density

Comparing Metal Properties

Properties of the s-Block Metals Properties of the p-Block Metals Transition Metals (d-Block Metals) Properties of the d-Block Metals

Limitation of the Metallic Bonding Model

Modifying Metals to Make Them More Useful

Alloying Work Hardening Heat Treatment Metallic Coatings

Metal Fatigue

Reactivity of Metals Reactions of the Metals Extraction of Metals Extraction of Iron Environmental Impacts Economic Impacts

Nanometals Applications Unique Nanometal Properties

Section 4: Ionic Compounds

Ionic Bonding

Forming Positively Charged Ions (Cations) s and p Block Metals (Monovalent Cations) d Block Metals (Transition Metals) Forming Negatively Charged Ions (Anions) Simple Anions

Polyatomic Ions

Forming an Ionic Bond

Writing Formulas for Ionic Compounds

Naming Ionic Compounds

Predicting the Structure of Ionic Compounds From its Properties

The Ionic Bonding Model (Lattice Model) Using the Ionic Bonding Model to Explain the Properties of Ionic Compounds Limitations of the Ionic Bonding Model

Uses of Common Ionic Compounds

Growing Ionic Crystals

Section 5: Quantifying Atoms and Compounds

Significant Figures Mathematics Operations Standard Form

Masses of Particles

The Mass Spectrometer The Mass Spectrum

The Mole Calculating the Number of Particles or Amount of Substance Molar Mass (M) Molar Mass (M) and Mole

Determining Formulae of Compounds

Percentage Composition Empirical Formulae Molecular Formulae

BOOK 2

AOS 2: HOW CAN THE VERSATILITY OF NON-METALS BE EXPLAINED?

Section 1: Materials from Molecules

Covalent Bonding How Do Covalent Bonds Form? Molecules Multiple Covalent Bonds

Naming Covalent Molecules Electron Dot Formulae (Lewis Structures)

Shapes of Molecules

Predicting Molecular Shape Less Common Shapes Summary of Common Molecular Shapes Shapes of Complex Molecules

Polar Bonds

Polar and Non-Polar Molecules Non-Polar Molecules

Polar Molecules Identifying Polar Molecules

Intermolecular Forces

Dispersion Forces Dipole – Dipole attraction Ion-Dipole Bonding (An Interparticle Bond – Not Intermolecular) Hydrogen Bonding Summary of Bonding in Covalent Molecular Substances Interparticle Bonding Summary

The Properties of Molecular Substances

Physical State Melting and Boiling Points Softness Electrical Conductivity Solubility Trends in Molecular Properties Properties of Water Section 2: Carbon Lattices and Carbon Nanomaterials Diamond

Allotropes of Carbon Fullerenes

Summary: Allotropes of Carbon

Summary: Covalent Bonding

Describing Atomic/Molecular Dimensions

Mixed Bonding Questions

Section 3: Organic Compounds

Organic Chemistry Hydrocarbons Molecular Formulae of Common Hydrocarbons Representations of Hydrocarbons Properties of Hydrocarbons Alkanes Alkenes Alkynes Branched Hydrocarbons Structural Isomers Naming Hydrocarbon Molecules Cyclic Hydrocarbons Aromatic Hydrocarbons **Functional Groups** Naming Organic Molecules with One Functional Group Naming Organic Molecules with Multiple Functional Groups Alcohols Carboxylic Acids Esters **Organic Reactions** Reactions Involving Alkanes **Reactions Involving Alkenes** A Summary of Addition Reactions Involving Ethene **Reaction of Alkynes** Reactions Involving Carboxylic Acids Esterification

Section 4: Polymers

Polymers Addition Polymerisation Properties of Addition Polymers Isotactic, Sydiotactic and Atactic Polymers Copolymers Polymer Properties Thermoplastic Polymers Polyethene Polystyrene Polystyrene Polyvinyl Chloride (PVC) Polytetrafluoroethene (Teflon) Thermosetting Polymers Condensation Polymerisation Advantages and Disadvantages of Polymer Materials