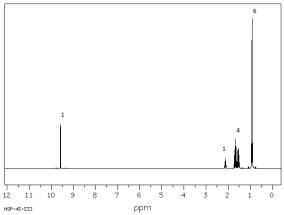
TOPIC 20 EXERCISE 3 – PROTON NMR SPECTRA

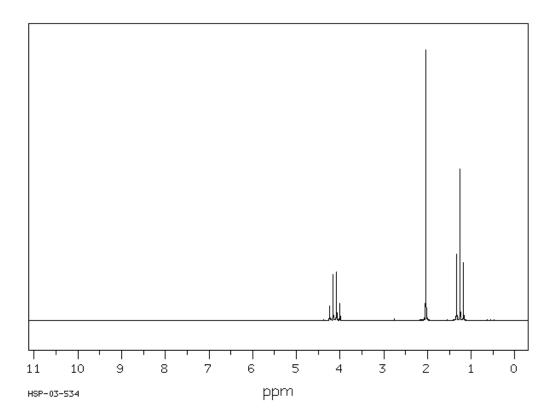
1. A compound with molecular formula $C_3H_6O_2$ gives the following peaks in its proton nmr spectrum:

Chemical shift	Splitting	Integration
		factor
1.1	Triplet	3
2.2	Quartet	2
11.8	Singlet	1

Identify the molecule and account for the chemical shifts, splitting and integration factors of all three peaks.

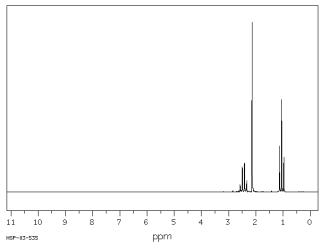

2. A compound with molecular formula $C_5H_{10}O_2$ gives the following peaks in its proton nmr spectrum:

Chemical shift	Splitting	Integration
		factor
1.2	Triplet	3
1.3	Triplet	3
2.3	Quartet	2
4.1	Quartet	2

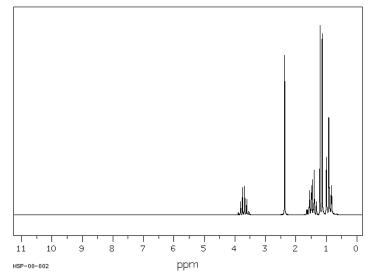

- a) Identify the molecule and account for the chemical shifts, splitting and integration factors of all four peaks.
- b) Explain why CH₃Cl is not used as a solvent in proton nmr spectroscopy.
- c) Give three reasons why T.M.S. is a good standard in proton nmr spectroscopy.
- **3.** Use the information in the table below to identify molecule A from its proton nmr spectrum:

peak	chemical shift/ppm	relative intensity	peak type
a	2.4	1	multiplet
b	2.1	3	Singlet
c	1.5	2	multiplet
d	1.1	3	doublet
e	0.9	3	triplet

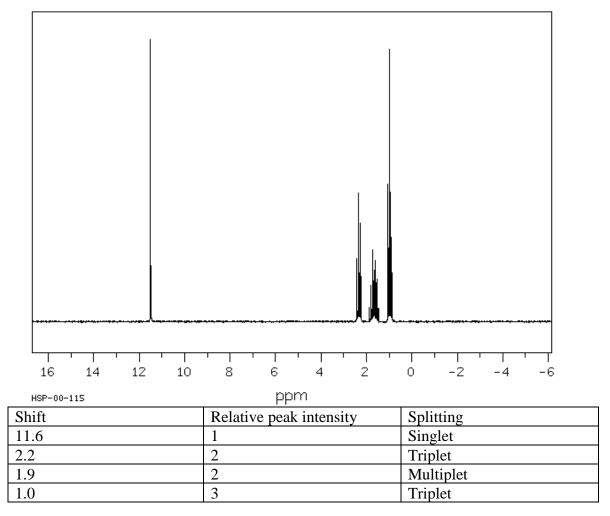
4. Identify the molecule responsible for the proton nmr spectrum below:

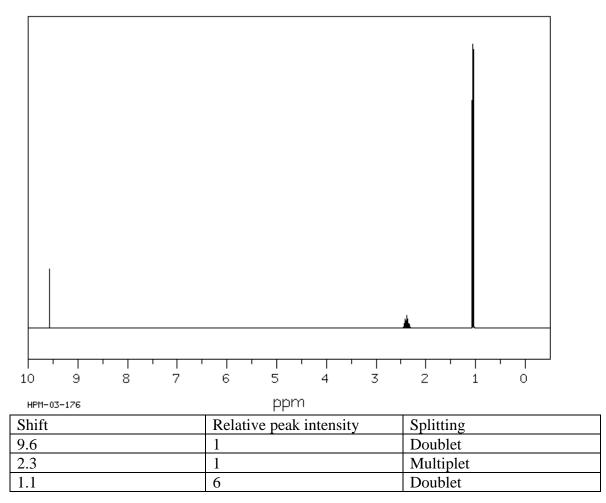


The peak at 9.6 is a doublet; the peak at 2.1 is a multiplet; the peak at 1.7 is a multiplet and the peak at 0.9 is a triplet

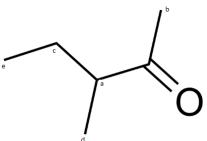


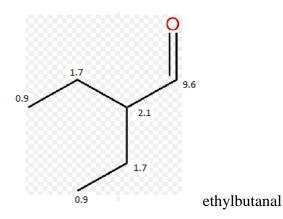
Shift	Relative peak intensity	Splitting
4.1	2	Quartet
2.1	3	Singlet
1.3	3	Triplet


6. Identify this molecule:



Shift	Relative peak intensity	Splitting
2.4	2	Quartet
2.2	3	Singlet
1.1	3	Triplet


Shift	Relative peak intensity	Splitting
3.6	1	Multiplet
2.3	1	Singlet
1.4	2	Multiplet
1.2	3	Doublet
0.9	3	Triplet


SOLUTIONS

- peak at 1.1 is CH₃- adjacent to -CH₂peak at 2.2 is -CH₂CO-, adjacent to CH₃peak at 11.8 is -COOH so molecule is propanoic acid, CH₃CH₂COOH
- a) peak at 1.2 is CH₃-, adjacent to -CH₂peak at 1.3 is also CH₃-, adjacent to -CH₂peak at 2.3 is -CH₂CO-, adjacent to CH₃peak at 4.1 is -CH₂O-, adjacent to CH₃so molecule is ethyl propanoate, CH₃CH₂COOCH₂CH₃
 - b) CHCl₃ is not used as a solvent because it contains a proton which will interfere with the spectrum of the substance being analysed.
 - c) TMS is a good standard because
 - it contains 12 identical protons, giving a single intense peak
 - it contains highly shielded protons, which do not interfere with the spectrum
 - it is cheap and non-toxic
- 3. e is $-C\underline{H}_3$ adjacent to $-C\underline{H}_2$ (c)
 - b is $-C\underline{H_3}$ adjacent to -C=O
 - d is $-C\underline{H}_3$ adjacent to $-C\underline{H}$ (a)
 - a is -CH- adjacent to -C=O

3-methylpentan-2one

4. 9.6 is -CHO adjacent to -CH- (2.1)
2.1 is -CH- adjacent to -CHO (9.6)
0.9 is 2 x -CH₃ adjacent to -CH₂- (1.7)

- 5. 4.1 is O-C<u>H₂</u>- adjacent to -C<u>H₃</u> (1.3) 2.1 is C<u>H₃</u>C=O CH₃COOCH₂CH₃ (ethyl ethanoate) (2.1) (4.1)(1.3)
- 6. 2.4 is $O=CC\underline{H}_2$ adjacent to $C\underline{H}_3$ (1.1) 2.2 is $C\underline{H}_3C=O$ $CH_3COCH_2CH_3$ (butanone) (2.2) (2.4)(1.1)
- 7. 0.9 is C<u>H₃</u> adjacent to C<u>H₂</u> (1.4) 1.2 is C<u>H₃</u> adjacent to C<u>H</u> (3.6) 3.6 is O-C<u>H</u>-2.3 is -O<u>H</u> CH₃CH₂CH(OH)CH₃ (butan-2-ol) (0.9)(1.4)(3.6)(2.3)(1.2)
- 8. 11.6 is -COOH
 2.2 is O=CCH₂- adjacent to -CH₂- (1.9)
 1.0 is -CH₃ adjacent to -CH₂- (1.9)
 CH₃CH₂CH₂COOH (butanoic acid)
 (1.0)(1.9)(2.2) (11.6)
- 9. 9.6 is -CHO adjacent to -CH- (2.3)
 2.3 is -CHC=O
 1.1 is 2 x CH₃ adjacent to -CH- (2.3)
 (CH₃)₂CHCHO (methylpropanal)
 (1.1) (2.3)(9.6)