## SOLVING TRIGONOMETRIC EOUATIONS

Step 1: Write all expressions in terms of one trigonometric function.
Step 2: Transpose the given equation so that the trigonometric expression (and the angle) is on one side of the equation, and the constants are located on the other side of the equation.

Step 3: Use the sign in front of the constant on the right hand side to determine the quadrants in which the solutions are to lie (use CAST).

Step 4: Calculate the reference angle i.e. the first quadrant solution. If the exact value cannot be determined:

Press Inverse Sin, Cos or Tan of the number on the right hand side of the equation (but ignore the sign).

For example: $\operatorname{Sin}^{-1}$ (number on RHS of equation but ignore the sign)
(Ensure that the calculator is in Radian Mode).
Step 5: Solve for the variable (usually $x$ or $\theta$ ). Let the angle equal the rule describing angles in the quadrants in which the solutions are to lie.


Note: First Quadrant Angle = FQA
Let angle $=F Q A$ if solution lies in $1^{\text {st }}$ Quadrant.
Let angle $=\pi-F Q A$ if solution lies in $2^{\text {nd }}$ Quadrant.
Let angle $=\pi+F Q A$ if solution lies in $3^{\text {rd }}$ Quadrant.
Let angle $=2 \pi-F Q A$ if solution lies in $4^{\text {th }}$ Quadrant.

Step 6: Evaluate all possible solutions by observing the given domain. This is done by adding or subtracting the PERIOD to each of the solutions, until the angles fall outside the given domain.


For sine and cosine functions: Period $=\frac{2 \pi}{\mid \text { The number in front of the variable } \mid}$
For tangent functions: Period $=\frac{\pi}{\mid \text { The number in front of the variable } \mid}$
Always look closely at the brackets in the given domain and consider whether the upper and lower limits can be included in your solutions.

DO NOT discard any solution until the final step.
Step 7: Eliminate solutions that do not lie within the specified domain.
Note: Students may solve trigonometric equations by rearranging the domain.

## QUESTION 1

Solve the following equation for $x: 2 \sin x=\sqrt{3}, x \in[0,4 \pi]$.

## Solution

Transpose the given equation so that the trigonometric expression (and the angle) is on one side of the equation, and the constants are located on the other side of the equation:
$\sin x=\frac{\sqrt{3}}{2}$
Calculate the reference angle (the first quadrant solution):
$x=\operatorname{Sin}^{-1}\left(\frac{\sqrt{3}}{2}\right)=\frac{\pi}{3}$
Use the sign in front of the constant on the right hand side to determine the quadrants in which the solutions are to lie:

Solutions are to lie in the quadrants where sine is positive i.e. the $1^{\text {st }}$ and $2^{\text {nd }}$ quadrants:

$$
\begin{array}{l|l}
S \checkmark & A \checkmark \\
\hline T & C
\end{array}
$$

Solve for the variable (usually $x$ ). Let the angle equal the rule describing angles in the quadrants in which the solutions are to lie:

$$
\begin{array}{ll}
x=\frac{\pi}{3} \quad \text { and } & x=\pi-1 \text { st Quadrant Angle } \\
& =\pi-\frac{\pi}{3}=\frac{2 \pi}{3} \\
\therefore\left\{x: x=\frac{\pi}{3}, \frac{2 \pi}{3}\right\}
\end{array}
$$

Evaluate all possible solutions by adding and/or subtracting the PERIOD to each of the calculated answers observing the given domain:

$$
\begin{aligned}
& T=\frac{2 \pi}{1}=2 \pi=\frac{6 \pi}{3} \\
& \left\{x: x=\frac{\pi}{3}, \frac{2 \pi}{3}, \frac{7 \pi}{3}, \frac{8 \pi}{3}\right\}
\end{aligned}
$$

# SOLVING SIMPLE TRIGONOMETRIC EQUATIONS WORKSHEET 1 

## QUESTION 1

Solve each equation over the interval $(-8,8)$. State your answers correct to 4 decimal places.
(a) $\tan \theta=4$
(b) $\cos \theta=0.84$
(c) $\sin \theta=0.63$

## SOLUTIONS

## QUESTION 1

(a)

$$
\begin{aligned}
& \tan \theta=4 \\
& \theta=\tan ^{-1}(4)=1.32582
\end{aligned}
$$



Solutions to lie in Quadrants 1 ti 3

$$
\begin{aligned}
& \theta=1.32582, \pi+1.32582 \\
& \theta=1.32582,4.46741
\end{aligned}
$$

Domain: $(-8,8) \quad \therefore$ Add I subtract period $=\frac{\pi}{1}=\pi$ $\theta=-4.95737,-1.81577,1.32582,4.46741,7.609$ $\therefore \theta=-4.9574,-1.8158,1.3258,4.4674,7.6090$
(b)

$$
\begin{aligned}
& \cos \theta=0.84 \\
& \cos ^{-1}(0.84)=0.573513
\end{aligned}
$$

$$
\begin{array}{l|l}
5 & A \\
\hline T & C
\end{array}
$$

$$
\text { Solutions to lie in Quadrants } 1+4
$$

$$
\begin{aligned}
\theta & =0.573513, \quad 2 \pi-0.573513 \\
& =0.573513,5.70967
\end{aligned}
$$

Domain: $(-8,8) \therefore$ Add/subtract period $=\frac{2 \pi}{l}=2 \pi$

$$
\theta=\begin{array}{ll}
6.8567 \\
0.573513, & 5.70967 \\
-5.70967, & -0.573513 \\
& -6.8567
\end{array}
$$

$$
\therefore \theta=-6.8567,-5.7097,-0.5735,0.5735,5.7097,6.8567
$$

(c)

$$
\sin \theta=0.63
$$

$\sin ^{-1}(0.63)=0.681553$
Solutions to lie in Quadrants $1+2$


$$
\begin{aligned}
\theta & =0.681553, & \pi-0.681553 \\
& =0.681553, & 2.46004
\end{aligned}
$$

Domain: $(-8,8) \therefore$ Add (subtract period $=\frac{2 \pi}{1}=2 \pi$

$$
\begin{array}{cr}
6.96474 & 8.74 .323 \\
0.681553 & 2.46004 \\
-5.60163 & -4.12315
\end{array}
$$

$\therefore \theta=-5.6016,-4.1232,0.6816,2.4600,6.9647$

# SOLVING SIMPLE TRIGONOMETRIC EQUATIONS WORKSHEET 2 

## QUESTION 1

Solve each equation over the interval $[0,2 \pi)$.
(a) $2 \cos x+4=5$
(b) $2 \sin x-1=0$
(c) $5 \cos x+\sqrt{3}=3 \cos x$
(d) $6 \tan x+\sqrt{3}=3 \tan x$

## QUESTION 2

Solve each equation over the interval $[0,2 \pi]$.
(a) $5 \cos 2 x=3 \cos 2 x-1$
(b) $\quad \sin \left(\frac{x}{2}\right)=\frac{\sqrt{2}}{2}$
(c) $\sin x+\cos x=0$
(d) $2 \cos (3 x)+\sqrt{3}=0$

## SOLUTIONS

## QUESTION 1

(a)

$$
\begin{gathered}
2 \cos x+4=5 \\
2 \cos x=1 \\
\cos x=\frac{1}{2} \\
\cos ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{3} \\
\therefore x=\frac{\pi}{3}, \frac{2 \pi-\frac{\pi}{3}}{3}, \frac{5 \pi}{3}
\end{gathered}
$$

(b)

$$
\begin{gathered}
2 \sin x-1=0 \\
2 \sin x=1 \\
\sin x=\frac{1}{2} \\
\sin ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{6}
\end{gathered}
$$



$$
x=\frac{\pi}{6}, \pi-\frac{\pi}{6}
$$

$$
x=\frac{\pi}{6}, \frac{5 \pi}{6}
$$

(c)

$$
\begin{aligned}
& 5 \cos x+\sqrt{3}=3 \cos x \\
& 2 \cos x=-\sqrt{3} \\
& \cos x=-\frac{\sqrt{3}}{2} \\
& \cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)=\frac{\pi}{6} \\
& x=\pi-\frac{\pi}{6}, \frac{\pi+\frac{\pi}{6}}{6}, \frac{7 \pi}{6}
\end{aligned}
$$

(d)

$$
\begin{aligned}
& 6 \tan x+\sqrt{3}=3 \tan x \\
& 6 \tan x-3 \tan x=\sqrt{3}
\end{aligned}
$$

$$
3 \tan x=-\sqrt{3}
$$

$$
\tan x=\frac{-\sqrt{3}}{3}
$$

$\tan ^{-1}\left(\frac{\sqrt{3}}{3}\right)=\frac{\pi}{6}$

solutions to lie in Quadrants $2+3$
$x=\pi-\frac{\pi}{6}, 2 \pi-\frac{\pi}{6}$
$x=\frac{5 \pi}{6}, \frac{11 \pi}{6}$

## QUESTION 2

(a)
$5 \cos 2 x=3 \cos 2 x-1$
$5 \cos 2 x-3 \cos 2 x=-1$

$$
\begin{array}{ll}
2 \cos 2 x=-1 & \text { S年 } \\
\cos 2 x=-\frac{1}{2} & \text { (T) } \\
\hline
\end{array}
$$

$\cos ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{3}$
Solutions to lie in Quadrants $2+4$

$$
\begin{aligned}
2 x & =\pi-\frac{\pi}{3}, \pi+\frac{\pi}{3} \\
2 x & =\frac{2 \pi}{3}, \frac{4 \pi}{3} \\
\therefore x & =\frac{2 \pi}{6}, \frac{4 \pi}{6}
\end{aligned}
$$

Domain: $[0,2 \pi] \therefore$ Add/subtract period $=\frac{2 \pi}{2}=\pi=\frac{6 \pi}{6}$
$x=\frac{2 \pi}{6}, \frac{4 \pi}{6}, \frac{8 \pi}{6}, \frac{10 \pi}{6}$
$x=\frac{\pi}{3}, \frac{2 \pi}{3}, \frac{4 \pi}{3}, \frac{5 \pi}{3}$
(b)

$$
\begin{aligned}
& \sin \left(\frac{x}{2}\right)=\frac{\sqrt{2}}{2} \\
& \sin ^{-1}\left(\frac{\sqrt{2}}{2}\right)=\frac{\pi}{4}
\end{aligned}
$$



Solutions to lie in Quadrants $1+2$
$\frac{x}{2}=\frac{\pi}{4}, \pi-\frac{\pi}{4}$
$\frac{x}{2}=\frac{\pi}{4}, \frac{3 \pi}{4}$
$\therefore x=\frac{2 \pi}{4}, \frac{6 \pi}{4}$
$\therefore x=\frac{\pi}{2}, \frac{3 \pi}{2}$
(c)

$$
\begin{aligned}
& \sin x+\cos x=0 \\
& \sin x=-\cos x \\
& \frac{\sin x}{\cos x}=\frac{-\cos x}{\cos x} \\
& \tan ^{\operatorname{san} x}=-1 \\
& \tan ^{-1}(1)=\frac{\pi}{4} \\
& \operatorname{solvtions}^{\tan } \text { ire in Quadrants } 2+4 \\
& x=\frac{\pi-\frac{\pi}{4}, 2 \pi-\frac{\pi}{4}}{x=\frac{3 \pi}{4}, \frac{7 \pi}{4}}
\end{aligned}
$$

(d)

$$
\begin{aligned}
& 2 \cos 3 x+\sqrt{3}=0 \\
& \cos 3 x=\frac{-\sqrt{3}}{2} \\
& \cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)=\frac{\pi}{6}
\end{aligned}
$$



Solutions to lie in Quadrants $2+3$
$3 x=\pi-\frac{\pi}{6}, \pi+\frac{\pi}{6}$
$3 x=\frac{5 \pi}{6}, \frac{7 \pi}{6}$
$x=\frac{5 \pi}{18}, \frac{7 \pi}{18}$
Domain: $[0,2 \pi] \therefore$ Add/subtract period $=\frac{2 \pi}{3}=\frac{12 \pi}{18}$
$x=\frac{5 \pi}{18}, \frac{7 \pi}{18}, \frac{17 \pi}{18}, \frac{19 \pi}{18}, \frac{29 \pi}{18}, \frac{31 \pi}{18}$

## SOLVING SIMPLE TRIGONOMETRIC EQUATIONS WORKSHEET 3

## QUESTION 1

Solve each equation over the given domain.
(a) $\sqrt{3}+\tan 2 x=0,[-2 \pi, 2 \pi)$
(b) $\quad \cos (\pi x)=0.5,[-1,2)$
(c) $\quad \sin \left(\frac{x}{2}\right)-1=0,[0,8 \pi)$
(d) $\tan \left(x+\frac{\pi}{3}\right)=1,[0,2 \pi]$

## QUESTION 2

Solve each equation over the given domain.
(a) $\tan (3 x+2)=\sqrt{3},(-\pi, \pi)$
(b) $-2 \cos [\pi(x-1)]-1=0,(-3,3)$
(c) $-5 \sin (3 x+\pi)=0,[-2 \pi, 0]$
(d) $2 \cos \left(x+\frac{\pi}{4}\right)-\sqrt{3}=0,[0,2 \pi]$
(e) $-\frac{2}{\sqrt{3}} \sin \left(x+\frac{\pi}{3}\right)-1=0,[-2 \pi, 2 \pi]$

## SOLUTIONS

## QUESTION 1

(a)

$$
\begin{gathered}
\sqrt{3}+\tan 2 x=0 \\
\tan 2 x=-\sqrt{3} \\
\tan ^{-1}(\sqrt{3})-\frac{\pi}{3}
\end{gathered}
$$


solutions to lie in Quadrants $2+4$

$$
\begin{aligned}
2 x & =\pi-\frac{\pi}{3}, 2 \pi-\frac{\pi}{3} \\
2 x & =\frac{2 \pi}{3}, \frac{5 \pi}{3} \\
x & =\frac{2 \pi}{6}, \frac{5 \pi}{6}
\end{aligned}
$$

$$
\text { Domain: }[-2 \pi, 2 \pi): \text { Add / subtract period }=\frac{\pi}{2}=\frac{3 \pi}{6}
$$

$$
x=\frac{-10 \pi}{6}, \frac{-7 \pi}{6}, \frac{-4 \pi}{6}, \frac{-\pi}{6}, \frac{2 \pi}{6}, \frac{5 \pi}{6}, \frac{8 \pi}{6}, \frac{11 \pi}{6}
$$

$$
x=-\frac{5 \pi}{3}, \frac{-7 \pi}{6}, \frac{-2 \pi}{3}, \frac{-\pi}{6}, \frac{\pi}{3}, \frac{5 \pi}{6}, \frac{4 \pi}{3}, \frac{11 \pi}{6}
$$

(b)

$$
\begin{aligned}
& \cos (\pi x)=0.5,[-1,2) \\
& \cos ^{-1}(0.5)=\frac{\pi}{3}
\end{aligned}
$$



Solutions to lie in Quadrants $1+4$
$\pi x=\frac{\pi}{3}, 2 \pi-\frac{\pi}{3}$
$\pi x=\frac{\pi}{3}, \frac{5 \pi}{3}$
$x=\frac{1}{3}, \frac{5}{3}$
Domain.' $[-1,2) \therefore$ Add/subtract period $=\frac{2 \pi}{2}=2=\frac{6}{3}$ $x=-\frac{1}{3}, \frac{1}{3}, \frac{5}{3}$
(c)

$$
\begin{aligned}
& \sin \left(\frac{x}{2}\right)-1=0 \\
& \sin \left(\frac{x}{2}\right)=1 \\
& \text { As } \sin \left(\frac{\pi}{2}\right)=1: \\
& \sin \left(\frac{x}{2}\right)=\sin \left(\frac{\pi}{2}\right) \\
& \therefore \frac{x}{2}=\frac{\pi}{2} \\
& \therefore x=\pi
\end{aligned}
$$

Domain: $[0,8 \pi)-$ Add (subtract period $=\frac{2 \pi}{1 / 2}=4 \pi$ $\therefore x=\pi, 5 \pi$
(d)

$$
\begin{aligned}
& \tan \left(x+\frac{\pi}{3}\right)=1 \\
& \tan ^{-1}(1)=\frac{\pi}{4} \\
& \text { } \operatorname{solutions~to~lie~in~Quadrants~} 1+3 \\
& \therefore \\
& x+\frac{\pi}{3}=\frac{\pi}{4}, \pi+\frac{\pi}{4} \\
& x+\frac{\pi}{3}=\frac{\pi}{4}, \frac{5 \pi}{4} \\
& x+\frac{4 \pi}{12}=\frac{3 \pi}{12}, \frac{15 \pi}{12} \\
& x=\frac{-\pi}{12}, \frac{11 \pi}{12}
\end{aligned}
$$



Domain: $[0,2 \pi]$-: Add/subract period $=\frac{\pi}{1}=\frac{12 \pi}{12}$

$$
\begin{aligned}
& x=\frac{-\pi}{12}, \frac{11 \pi}{12}, \frac{23 \pi}{12} \\
& \therefore x=\frac{11 \pi}{12}, \frac{23 \pi}{12}
\end{aligned}
$$

## QUESTION 2

(a)

$$
\begin{aligned}
& \tan (3 x+2)=\sqrt{3} \\
& \tan ^{-1}(\sqrt{3})=\frac{\pi}{3}
\end{aligned}
$$



Solutions to tie in Quadrants $1+3$
$3 x+2=\frac{\pi}{3}, \pi+\frac{\pi}{3}$
$3 x+2=\frac{\pi}{3}, \frac{4 \pi}{3}$
$3 x=\frac{\pi}{3}-2, \frac{4 \pi}{3}-2$
$3 x=\frac{\pi-6}{3}, \frac{4 \pi-6}{3}$
$x=\frac{\pi-6}{9}, \frac{4 \pi-6}{9}$
Domain: $(-\pi, \pi) \therefore$ Add/ subtract period $=\frac{\pi}{3}=1.0472$ $3.87+2$
2.824
1.7768
$-0.317601$
0.729597
$-1.3648$
$-2.412$
$-3.4592$
$\therefore x=\frac{\pi-6}{9}-\frac{3 \pi}{9}-\frac{3 \pi}{9}, \frac{\pi-6}{9}-\frac{3 \pi}{9}, \frac{\pi-6}{9}$

$$
\frac{4 \pi-6}{9}, \frac{4 \pi-6}{9}+\frac{3 \pi}{9}, \frac{4 \pi-6}{9}+\frac{3 \pi}{9}+\frac{3 \pi}{9}
$$

$x=\frac{\pi-6-6 \pi}{9}, \frac{\pi-6-3 \pi}{9}, \frac{\pi-6}{9}, \frac{4 \pi-6}{9}, \frac{4 \pi-6+3 \pi}{9}$, $\frac{4 \pi-6+6 \pi}{9}$
$x=\frac{-7 \pi-6}{9}, \frac{-2 \pi-6}{9}, \frac{\pi-6}{9}, \frac{4 \pi-6}{9}, \frac{7 \pi-6}{9}, \frac{10 \pi-6}{9}$
(b)

$$
\begin{aligned}
& -2 \cos [\pi(x-1)]-1=0 \\
& \cos [\pi(x-1)]=-\frac{1}{2} \\
& \cos ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{3} \\
& \text { sautrons to lie in Quadrants } 2+3 \\
& \pi(x-1)=\pi-\frac{\pi}{3}, \pi+\frac{\pi}{3} \\
& \pi(x-1)=\frac{2 \pi}{3}, \frac{4 \pi}{3} \\
& x-1=\frac{2}{3}, \frac{4}{3} \\
& x=\frac{5}{3}, \frac{7}{3}
\end{aligned}
$$

Domain: $(-3,3) \therefore$ Add/subtract period $=\frac{2 \pi}{\pi}=2=\frac{6}{3}$
$x=-\frac{7}{3},-\frac{5}{3},-\frac{1}{3}, \frac{1}{3}, \frac{5}{3}, \frac{7}{3}$
(c)

$$
\begin{array}{r}
-5 \sin (3 x+\pi)=0 \\
\sin (3 x+\pi)=0
\end{array}
$$

As $\sin 0=0$

$$
\begin{gathered}
\sin (3 x+\pi)=\sin (0) \\
3 x+\pi=0 \\
3 x=-\pi \\
x=-\pi / 3
\end{gathered}
$$

Domain: $[-2 \pi, 0]-$ Add subtract period $=\frac{2 \pi}{3}$

$$
x=-\frac{5 \pi}{3}, \frac{3 \pi}{3}, \frac{-\pi}{3}
$$

(d)

$$
\begin{aligned}
& 2 \cos \left(x+\frac{\pi}{4}\right)-\sqrt{3}=0 \\
& \cos \left(x+\frac{\pi}{4}\right)=\frac{\sqrt{3}}{2} \\
& \cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)=\frac{\pi}{6}
\end{aligned}
$$



Solutions to lie in Quadrants $1+4$
$x+\frac{\pi}{4}=\frac{\pi}{6}, 2 \pi-\frac{\pi}{6}$
$x+\frac{\pi}{4}=\frac{\pi}{6}, \frac{11 \pi}{6}$
$x+\frac{3 \pi}{12}=\frac{2 \pi}{12}, \frac{22 \pi}{12}$
$x=\frac{-\pi}{12}, \frac{19 \pi}{12}$
Domain: $[0,2 \pi] \therefore$ Add/ subtract period $=\frac{2 \pi}{1}=\frac{24 \pi}{12}$
$x=\frac{-\pi}{12}, \frac{19 \pi}{12}, \frac{23 \pi}{12}$

$$
x=\frac{19 \pi}{12}, \frac{23 \pi}{12}
$$

(e)

$$
\begin{aligned}
& \frac{-2}{\sqrt{3}} \sin \left(x+\frac{\pi}{3}\right)-1=0 \\
& \sin \left(x+\frac{\pi}{3}\right)=-\frac{\sqrt{3}}{2} \\
& \sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)=\frac{\pi}{3}
\end{aligned}
$$



Solutions to lie in Quadrants $3+4$

$$
\begin{aligned}
& x+\frac{\pi}{3}=\pi+\frac{\pi}{3}, 2 \pi-\frac{\pi}{3} \\
& x+\frac{\pi}{3}=\frac{4 \pi}{3}, \frac{5 \pi}{3} \\
& x=\frac{3 \pi}{3}, \frac{4 \pi}{3}
\end{aligned}
$$

Domain: $[-2 \pi, 2 \pi] \therefore$ Add/subtract period $=\frac{2 \pi}{1}=\frac{6 \pi}{3}$
$x=-\frac{3 \pi}{3},-\frac{2 \pi}{3}, \frac{3 \pi}{3}, \frac{4 \pi}{3}$
$x=-\pi, \frac{-2 \pi}{3}, \pi, \frac{4 \pi}{3}$

## GENERAL SOLUTIONS

If the equation of a circular function has no domain or an infinite domain, there will be an infinite number of solutions.

The solutions to such equations are called general solutions and are calculated by applying the rules below:

## In General:

If $\cos x=a$ then $x=2 n \pi \pm \cos ^{-1}(a)$ where $n \in Z$ and $-1 \leq a \leq 1$.
If $\tan x=a$ then $x=n \pi+\tan ^{-1}(a)$ where $n \in Z$ and $a \in R$.
If $\sin x=a$ then $x=2 n \pi+\sin ^{-1}(a)$ where $n \in Z$ and $-1 \leq a \leq 1$.

$$
\text { or } x=(2 n+1) \pi-\sin ^{-1}(a) \text { where } n \in Z \text { and }-1 \leq a \leq 1 .
$$

## Alternative Notation:

If $\sin x=a$ then $x=n \pi+(-1)^{n} \sin ^{-1}(a)$ where $n \in Z$ and $-1 \leq a \leq 1$.

## Note:

- To find the inverse trigonometric value, substitute the number and sign on the right hand side of the equation after the equation has been transposed.
For example: If $\cos x=-0.5$ then $\cos ^{-1}(a)=\cos ^{-1}(-0.5)=-\frac{\pi}{3}$
- Sometimes, the answer given on the CAS will not look the same as what is obtained when equations are solved algebraically. The answers, however, should be equivalent.


## GENERAL SOLUTIONS FOR COSINE

In General: If $\cos x=a$ then $x=2 n \pi \pm \cos ^{-1}(a)$ where $n \in Z$ and $-1 \leq a \leq 1$.
To find $\cos ^{-1}(a)$ substitute the number and sign on the right hand side of the equation after the equation has been transposed $(a)$. Eg. If $\cos x=-0.5$ then $\cos ^{-1}(a)=\cos ^{-1}(-0.5)=\frac{2 \pi}{3}$


## QUESTION 1

Find the general solution for $\cos x=0.5$.

## Solution

If $\cos x=a$ then $x=2 n \pi \pm \cos ^{-1}(a)$ where $n \in Z$ and $-1 \leq a \leq 1$.
$\cos ^{-1}(0.5)=\frac{\pi}{3}$
$\therefore x=2 n \pi \pm \frac{\pi}{3}=\frac{6 n \pi \pm \pi}{3}=\frac{(6 n \pm 1) \pi}{3}, n \in Z$

## GENERAL SOLUTIONS FOR TANGENT

In General: If $\tan x=a$ then $x=n \pi+\tan ^{-1}(a)$ where $n \in Z$ and $a \in R$.
To find $\tan ^{-1}(a)$ substitute the number and sign on the right hand side of the equation after the equation has been transposed $(a)$.

For example: If $\tan x=-2$ then $\tan ^{-1}(a)=\tan ^{-1}(-2)=-1.1071$


## QUESTION 2

Find the general solution for $\tan x=1$.

## Solution

If $\tan x=a$ then $x=n \pi+\tan ^{-1}(a)$ where $n \in Z$ and $a \in R$.
$\tan ^{-1}(1)=\frac{\pi}{4}$
$\therefore x=n \pi+\frac{\pi}{4}=\frac{4 n \pi+\pi}{4}=\frac{(4 n+1) \pi}{4}, n \in Z$

## GENERAL SOLUTIONS FOR SINE

If $\sin x=a$ then $x=2 n \pi+\sin ^{-1}(a)$ where $n \in Z$ and $-1 \leq a \leq 1$.

$$
\text { or } x=(2 n+1) \pi-\sin ^{-1}(a) \text { where } n \in Z \text { and }-1 \leq a \leq 1 .
$$

## Alternative Notation:

If $\sin x=a$ then $x=n \pi+(-1)^{n} \sin ^{-1}(a)$ where $n \in Z$ and $-1 \leq a \leq 1$.
To find $\sin ^{-1}(a)$ substitute the number and sign on the right hand side of the equation after the equation has been transposed $(a)$.

For example: If $\sin x=-0.5$ then $\sin ^{-1}(a)=\sin ^{-1}(-0.5)=-\frac{\pi}{6}$.

If the solutions for $a$ are positive:


If $a$ is negative:
Use Quadrant 4 rules to calculate the basic angle. This means that angles will be negative.

## QUESTION 3

Find the general solution for $\sin x=0.5$.

## Solution

If $\sin x=a$ then $x=2 n \pi+\sin ^{-1}(a)$ where $n \in Z$ and $-1 \leq a \leq 1$.

$$
\text { or } x=(2 n+1) \pi-\sin ^{-1}(a) \text { where } n \in Z \text { and }-1 \leq a \leq 1 .
$$

$x=2 n \pi+\sin ^{-1}(a)$ or $\quad x=(2 n+1) \pi-\sin ^{-1}(a)$
$\sin ^{-1}(0.5)=\frac{\pi}{6}$
$x=2 n \pi+\frac{\pi}{6} \quad$ or $\quad x=(2 n+1) \pi-\frac{\pi}{6}$
$x=\frac{12 n \pi+\pi}{6} \quad$ or $\quad x=\frac{6(2 n+1) \pi-\pi}{6}$
$x=\frac{(12 n+1) \pi}{6}$ or $x=\frac{(12 n \pi+6 \pi-\pi)}{6}=\frac{(12 n \pi+5 \pi)}{6}=\frac{(12 n+5) \pi}{6}$

## Alternatively:

If $\sin x=a$ then $x=n \pi+(-1)^{n} \sin ^{-1}(a)$ where $n \in Z$ and $-1 \leq a \leq 1$.

## Therefore:

$x=n \pi+(-1)^{n} \sin ^{-1}(a)$
Check the answer to this question on the CAS
$x=n \pi+(-1)^{n} \frac{\pi}{6}$

# GENERAL SOLUTIONS OF TRIGONOMETRIC EQUATIONS WORIKSHEET 1 <br> <br> COSINE EQUATIONS 

 <br> <br> COSINE EQUATIONS}

QUESTION 1
Find $2 \cos x=1$

## Solution

QUESTION 2
Find $2 \cos \left(3 x+\frac{\pi}{6}\right)=1$.
Solution

## QUESTION 3

Find $2 \cos \left(2 x+\frac{\pi}{3}\right)=1$.

## Solution

## QUESTION 4

Find $3 \cos (x-4)=1$.

## Solution

## TANGENT EQUATIONS

## QUESTION 5

Find $\tan x=1$.

## Solution

## QUESTION 6

Find $\tan \left(\frac{\pi}{3}-x\right)=0$.
Solution

## QUESTION 7

Find $3 \tan (2 x-5)+4=0$.

## Solution

## SINE EQUATIONS - NOTATION 1

## QUESTION 8

Find $2 \sin x-\sqrt{3}=0$.

## Solution

## QUESTION 9

Find $\sqrt{2} \sin \left(x+\frac{\pi}{4}\right)=1$.

## Solution

QUESTION 10
Find $\sin (2 x+3)=-1$.

## Solution

## SINE EQUATIONS - NOTATION 2

## QUESTION 11

Find $2 \sin x-\sqrt{3}=0$.

## Solution

## QUESTION 12

Find $\sqrt{2} \sin \left(x+\frac{\pi}{4}\right)=1$.

## Solution

## QUESTION 13

Find $\sin (2 x+3)=-1$.

## Solution

## WORKSHEET 1 - SOLUTIONS

COSINE EQUATIONS


If $\cos \theta=a$ then $\theta=2 n \pi \pm \cos ^{-1}(a)$
If $\cos (E N T I R E$ ANGLE $)=R H S$ then $E N T I R E$ ANGLE $=2 n \pi \pm \cos ^{-1}(R H S)$

## QUESTION 1

Find $2 \cos x=1$.

## Solution

$$
\begin{aligned}
& \text { Entire Angle }=2 n \pi \pm \cos ^{-1}(R M S) \\
& \cos x=\frac{1}{2} \\
& x=2 n \pi \pm \cos ^{-1}\left(\frac{1}{2}\right) \\
& x=2 n \pi \pm \frac{\pi}{3} \quad n \in z
\end{aligned}
$$

## QUESTION 2

Find $2 \cos \left(3 x+\frac{\pi}{6}\right)=1$.

## Solution

$$
\begin{aligned}
& 2 \cos \left(3 x+\frac{\pi}{6}\right)=1 \\
& \cos \left(3 x+\frac{\pi}{6}\right)=\frac{1}{2} \\
& \text { Entire Angle }=2 n \pi \pm \cos ^{-1} \text { (RMS) } \\
& \frac{\downarrow}{+\frac{\pi}{6}}=2 n \pi \pm \cos ^{-1}\left(\frac{1}{2}\right) \\
& 3 x+\frac{\pi}{6}=2 n \pi \pm \frac{\pi}{3} \\
& 3 x=2 n \pi \pm \frac{2 \pi}{6}-\frac{\pi}{6} \\
& 3 x=2 n \pi+\frac{\pi}{6}, 2 m-\frac{3 \pi}{6} \\
& 3 x=\frac{12 n \pi+\pi}{6}, \frac{12 n \pi-3 \pi}{6} \\
& x=\frac{12 n \pi+\pi}{18}, \frac{12 n \pi-3 \pi}{18} \\
& x=\frac{(12 n+1)}{18} \pi, \frac{(4 n-1)}{6} \pi \quad n \in Z
\end{aligned}
$$

## QUESTION 3

Find $2 \cos \left(2 x+\frac{\pi}{3}\right)=1$.

## Solution

$$
\begin{aligned}
& 2 \cos \left(2 x+\frac{\pi}{3}\right)=1 \\
& \cos \left(2 x+\frac{\pi}{3}\right)=\frac{1}{2} \\
& \text { If } \cos \left(2 x+\frac{\pi}{3}\right)=\frac{1}{2} \text { then } \begin{aligned}
2 x+\frac{\pi}{3} & =2 n \pi \pm \cos ^{-1}\left(\frac{1}{2}\right) \\
2 x+\frac{\pi}{3} & =2 n \pi \pm \frac{\pi}{3} \\
2 x & =2 n \pi \pm \frac{\pi}{3}-\frac{\pi}{3} \\
2 x & =2 n \pi, 2 n \pi-\frac{2 \pi}{3} \\
x & =n \pi, n \pi-\frac{\pi}{3} \text { net }
\end{aligned}
\end{aligned}
$$

## QUESTION 4

Find $3 \cos (x-4)=1$.

## Solution

$$
\begin{aligned}
& 3 \cos (x-4)-2=0 \\
& \cos (x-4)=\frac{2}{3} \\
& \text { Entire Angle }=2 n \pi \pm \cos ^{-1}(\text { RMS }) \\
& \cos (x-4)=\frac{2}{3} \text { then }(x-4)=2 n \pi \pm \cos ^{-1}\left(\frac{2}{3}\right) \\
& x=2 n \pi \pm \cos ^{-1}\left(\frac{2}{3}\right)+4
\end{aligned}
$$

## TANGENT EQUATIONS



## QUESTION 5

Find $\tan x=1$.

## Solution

$$
\begin{aligned}
\tan x=1 \text { then } x & =n \pi+\tan ^{-1}(1) \\
x & =n \pi+\frac{\pi}{4}, n \in \mathbb{Z}
\end{aligned}
$$

## QUESTION 6

Find $\tan \left(\frac{\pi}{3}-x\right)=0$.

## Solution

$$
\left.\begin{array}{l}
\tan \left(\frac{\pi}{3}-x\right)=0 \\
\text { Entire Angle }=n \pi+\tan ^{-1}(R H S) \\
\frac{\pi}{3}-x=n \pi+\tan ^{-1}(0) \\
-x
\end{array}\right)=n \pi-\frac{\pi}{3} .
$$

## QUESTION 7

Find $3 \tan (2 x-5)+4=0$.

## Solution

$$
\begin{aligned}
& 3 \tan (2 x-5)+4=0 \\
& \tan (2 x-5)=\frac{-4}{3} \\
& \tan (2 x-5)=\frac{-4}{3} \text { then } 2 x-5=n \pi+\tan ^{-1}\left(-\frac{4}{3}\right) \\
& 2 x=n \pi+\tan ^{-1}\left(-\frac{4}{3}\right)+5 \\
& x=\frac{n \pi}{2}+\frac{1}{2} \tan ^{-1}\left(-\frac{4}{3}\right)+\frac{5}{2}
\end{aligned}
$$

## SINE EQUATIONS - NOTATION 1



$$
\text { If } \sin \theta=a \text { then } \theta=n \pi+(-1)^{n} \sin ^{-1}(a)
$$

If $\sin ($ ENTIRE ANGLE $)=$ RHS then ENTIRE ANGLE $=n \pi+(-1)^{n} \sin ^{-1}($ RHO $)$

## QUESTION 8

Find $2 \sin x-\sqrt{3}=0$.

## Solution

$$
\begin{aligned}
& 2 \sin x-\sqrt{3}=0 \\
& \begin{aligned}
\sin x & =\frac{\sqrt{3}}{2}
\end{aligned} \\
& \text { If } \left.\begin{array}{rl}
\sin \theta & =a \text { then } \theta=n \pi+(-1)^{n} \sin ^{-1}(a) \\
\text { entire } & =n \pi+(-1)^{n} \sin ^{-1}(R H S) \\
\text { AnGLe } & =n+(-1)^{n} \sin ^{-1}\left(\frac{\sqrt{3}}{2}\right) \\
\sin x & =\frac{\sqrt{3}}{2} \text { then } x
\end{array}\right)=n \pi+(-1)^{n} \cdot \frac{\pi}{3}
\end{aligned}
$$

QUESTION 9
Find $\sqrt{2} \sin \left(x+\frac{\pi}{4}\right)=1$.
Solution

$$
\begin{aligned}
& \sqrt{2} \sin \left(x+\frac{\pi}{4}\right)=1 \\
& \sin \left(x+\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}} \\
& \therefore \quad \begin{array}{l}
\text { ENURE } \\
\text { ANGLE }
\end{array}=n \pi+(-1)^{n} \sin ^{-1}(\text { RMS }) \\
& x+\frac{\pi}{4}=n \pi+(-1)^{n} \sin ^{-1}\left(\frac{1}{\sqrt{2}}\right) \\
& x+\frac{\pi}{4}=n \pi+(-1)^{n} \frac{\pi}{4} \\
& x=n \pi+(-1)^{n} \frac{\pi}{4}-\frac{\pi}{4}, n \in z
\end{aligned}
$$

QUESTION 10
Find $\sin (2 x+3)=-1$.
Solution

$$
\begin{aligned}
& \sin (2 x+3)=-1 \\
& \therefore 2 x+3=n \pi+(-1)^{n} \sin ^{-1}(-1) \\
&=n \pi+(-1)^{n}\left(-\frac{\pi}{2}\right) \\
&=n \pi-(-1)^{n} \frac{\pi}{2} \\
& 2 x=n \pi-(-1)^{n} \frac{\pi}{2}-3 \\
& x= \frac{n \pi}{2}-(-1)^{n} \frac{\pi}{4}-\frac{3}{2}, n \in z
\end{aligned}
$$

## SINE EQUATIONS - NOTATION 2

$$
\begin{aligned}
& \text { If } \sin \theta=\text { then } \\
& \text { represents represents number and sign on RHS } \\
& \text { entire angle when equation is transposed to is late } \\
& \theta=2 n \pi+\sin ^{-1} \text { (a) } \quad \text { on and its angle } \\
& \theta=(2 n+1) \pi-\sin ^{-1}(a) \\
& \text { If } \sin \theta=a \text { then } \theta=2 n \pi+\sin ^{-1}(a) \text { or } \theta=(2 n+1) \pi-\sin ^{-1}(a) \\
& \text { If } \sin (E N T I R E \text { ANGLE })=R H S \text { then } E N T I R E A N G L E=2 n \pi+\sin ^{-1}(R H S) \\
& \text { or } E N T I R E \text { ANGLE }=(2 n+1) \pi-\sin ^{-1}(R H S)
\end{aligned}
$$

## QUESTION 11

Find $2 \sin x-\sqrt{3}=0$.

## Solution

$$
\begin{aligned}
& 2 \sin x-\sqrt{3}=0 \\
& \sin x=\frac{\sqrt{3}}{2} \\
& x=2 n \pi+\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right) \text { OR }(2 n+1) \pi-\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right) \\
& x=2 n \pi+\frac{\pi}{3},(2 n+1) \pi-\frac{\pi}{3}, n \in z
\end{aligned}
$$

QUESTION 12
Find $\sqrt{2} \sin \left(x+\frac{\pi}{4}\right)=1$.
Solution

$$
\begin{aligned}
& \sqrt{2} \sin \left(x+\frac{\pi}{4}\right)=1 \\
& \quad \sin \left(x+\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}} \\
& x+\frac{\pi}{4}=2 n \pi+\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right) \text { OR }(2 n+1) \pi-\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right) \\
& \quad=2 n \pi+\frac{\pi}{4},(2 n+1) \pi-\frac{\pi}{4} \\
& x=2 n \pi,(2 n+1) \pi-\frac{\pi}{2} \quad n \in Z
\end{aligned}
$$

QUESTION 13
Find $\sin (2 x+3)=-1$.
Solution

$$
\begin{aligned}
\sin (2 x+3) & =-1 \\
\therefore \quad 2 x+3 & =2 n \pi+\sin ^{-1}(-1) \text { OR }(2 n+1) \pi-\sin ^{-1}(-1) \\
& =2 n \pi-\frac{\pi}{2},(2 n+1) \pi+\frac{\pi}{2} \\
2 x & =2 n \pi-\frac{\pi}{2}-3,(2 n+1) \pi+\frac{\pi}{2}-3 \\
x & =n \pi-\frac{\pi}{4}-\frac{3}{2},(2 n+1) \frac{\pi}{2}+\frac{\pi}{4}-\frac{3}{2}, n \in z
\end{aligned}
$$

