UNIT 3 \& 3 MATHEMATICAL METHODS QUIZ

QUESTION 1

The function with rule $f(x)=3 \sin \left(2 x+\frac{\pi}{3}\right)$ will become the function with rule $g(x)=\sin (x)$ through the following ordered sequence of transformations

A Dilation by a factor $\frac{1}{2}$ from the y-axis; then dilation by a factor 3 from the x-axis and finally a translation $\frac{\pi}{6}$ to the left, parallel to the x-axis.
B Translation of $\frac{\pi}{6}$ units to the right parallel to the x-axis; then dilation by a factor 2 from the y-axis; and finally a dilation by a factor $\frac{1}{3}$ from the x-axis.
C Dilation by a factor $\frac{1}{2}$ from the y-axis; then dilation by a factor 3 from the x-axis and finally a translation $\frac{\pi}{3}$ to the left, parallel to the x-axis.
D Translation of $\frac{\pi}{3}$ units to the right parallel to the x-axis; then dilation by a factor 2 from the y-axis; and finally a dilation by a factor $\frac{1}{3}$ from the x-axis.
E Translation of $\frac{\pi}{6}$ units to the left parallel to the x-axis; then dilation by a factor 2 from the y-axis; and finally a dilation by a factor $\frac{1}{3}$ from the x-axis.

QUESTION 2

If $\log _{e} x=\log _{e}(x-1)+b$ then x is equal to
A. $\frac{e^{b}}{1-e^{b}}$
B. $\frac{1}{e^{b}-1}$
C. $\quad \log _{e} \frac{x}{x-1}$
D. $\frac{1}{1-e^{b}}$
E. $\frac{e^{b}}{e^{b}-1}$

QUESTION 3

Let $f(x)=a \sin (2 x)$ and $g(x)=b$, where $0<x<\frac{3 \pi}{2}$ and a and b are positive integers. Which of the following statements is not true?

A If $b>a$ there are no real solutions to the equation $f(x)=g(x)$.
B If $0<b<a$ there are 4 solutions to the equation $f(x)=g(x)$.
C If $0<b<a$ there are 4 solutions to the equation $f(x)=-g(x)$.
D If $a=b$ there is 1 solution to the equation $f(x)=-g(x)$.
E If $a=b$ there are 2 solutions to the equation $f(x)=g(x)$.

QUESTION 4

$\sin \theta=\sin \left(\frac{5 \pi}{7}\right), \theta \in R$ is equal to
A $\quad \theta=\pi k+(-1)^{k} \frac{5 \pi}{7}$
B $\quad \theta=\pi k+(-1)^{k} \frac{2 \pi}{7}$
C $\quad \theta=2 \pi k+(-1)^{k} \frac{2 \pi}{7}$
D $\quad \theta=2 \pi k+(-1)^{k} \frac{5 \pi}{7}$
E $\quad \theta=2 \pi k-(-1)^{k} \frac{5 \pi}{7}$

QUESTION 5

The function with rule $f(x)=\left\{\begin{array}{ll}(x-a)^{3}+2, & x \leq 0 \\ b x+\cos x, & x>0\end{array}\right.$ is differentiable for all values of x if
A $a=0$ and $b=1$
B $\quad a=1$ and $b=-3$
C $\quad a=1$ and $b=3$
D $\quad a=-1$ and $b=-3$
E $\quad a=-1$ and $b=3$

QUESTION 6

If $f(x)=2^{x}$ which of the following functions produces the greatest value for $f(g(x))$ for all $x>1$ where $c>1$?

A $g(x)=c x$
B $g(x)=x-c$
C $g(x)=\frac{c}{x}$
D $\quad g(x)=0$
E $\quad g(x)=1$

QUESTION 7

The function f satisfies the functional equation $f(x-y)=\frac{f(x)}{f(y)}$ where x and y are any non-zero real numbers. A possible rule for the function f is

A $\quad f(x)=a x$
B $\quad f(x)=a \log _{e} x$
C $f(x)=2^{a x}$
D $\quad f(x)=f(x-y)+y f(x)$
E $\quad f(x)=1-x^{2}$

QUESTION 8

If $f^{\prime}(x)=-f(x)$ and $f(1)=1$, then $f(x)=$
A $\frac{1}{2} e^{-2 x+2}$
B e^{-x-1}
C e^{1-x}
D e^{-x}
E $-e^{x}$

QUESTION 9

If $y=\tan u, u=v-\frac{1}{v}$ and $v=\log _{e} x$, the value of $\frac{d y}{d x}$ at $x=e$ is:
A 0
B $\frac{1}{e}$
C 1
D $\frac{2}{e}$
$\mathrm{E} \quad \sec ^{2}(e)$

QUESTION 10

Let f be a one-to-one differentiable function such that $f(3)=7, f(7)=8, f^{\prime}(3)=2$ and $f^{\prime}(7)=3$. The function g is differentiable and $g(x)=f^{-1}(x)$ for all $x . g^{\prime}(7)$ is equal to

A $\frac{1}{2}$
B 2
C $\frac{1}{6}$
D $\frac{1}{8}$
E $\quad \frac{1}{3}$

QUESTION 11

If $y=\left\{\begin{array}{ll}\cos x & \text { for }\left\{x: 0 \leq x \leq \frac{\pi}{2}\right\} \cup\left\{x: \frac{3 \pi}{2} \leq x \leq 2 \pi\right\} \\ -\cos x & \text { for }\left\{x: \frac{\pi}{2}<x<\frac{3 \pi}{2}\right\}\end{array}\right.$,
the rate of change of y with respect to x at $x=k, \frac{\pi}{2}<k<\frac{3 \pi}{2}$, is:
A $\quad-\sin (k)$
B $\sin (k)$
C $\quad-\cos (k)$
D $-\sin (1)$
E $\quad \sin (1)$

QUESTION 12

Let $g(x)=f\left(e^{\cos x}\right)$.
If $g^{\prime}(x)=-\sin x e^{\cos x} \times\left(e^{\cos x}\right)^{3}$ find $f(x)$.

Solution

QUESTION 13

If $\int_{1}^{2} f(x-c) d x=5$ where c is a constant, then $\int_{1-c}^{2-c} f(x) d x=$
A $5+c$
B 5
C $5-c$
D $c-5$
E -5

QUESTION 14

A region in the plane is bounded by the graph of $y=\frac{1}{x}$, the x axis, the line $x=m$, and the line $x=2 m, m>0$. The area of this region

A is independent of m.
B increases as m increases.
C decreases as m increases.
D decreases as m increases when $m<\frac{1}{2}$; increases as m increases when $m>\frac{1}{2}$.
E increases as m increases when $m<\frac{1}{2}$; decreases as m increases when $m>\frac{1}{2}$.

QUESTION 15

Which of the following limits is equal to $\int_{3}^{5} x^{4} d x$?
A $\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(3+\frac{k}{n}\right)^{4} \frac{1}{n}$
B $\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(3+\frac{k}{n}\right)^{4} \frac{2}{n}$
C $\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(3+\frac{2 k}{n}\right)^{4} \frac{1}{n}$
D $\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(3+\frac{2 k}{n}\right)^{4} \frac{2}{n}$
E $\quad \lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(3+\frac{k}{2 n}\right)^{4} \frac{2}{n}$

ANSWERS

QUESTION 1

Answer is B
QUESTION 2 Answer is E
QUESTION 3 Answer is C
QUESTION 4 Answer is B
QUESTION 5 Answer is C
QUESTION 6 Answer is A
QUESTION 7 Answer is C
QUESTION 8 Answer is C
QUESTION 9 Answer is D
QUESTION 10 Answer is A
QUESTION 11 Answer is B
QUESTION $12 \quad f(x)=\frac{x^{4}}{4}+c$
QUESTION 13 Answer is B
QUESTION 14 Answer is A
QUESTION 15 Answer is D

