TRIGONOMETRY

SECTION 1: TRIGONOMETRY BASED ON RIGHT ANGLED TRIANGLES

QUESTION 1

(a)

(c)

Hypotenuse
(b)

QUESTION 2

Find the unknown length in the following triangle.

Solution

Step \#	Instruction	Your Workings
Step 1:	Label the triangle in terms of a, b and c where c represents the longest side or hypotenuse.	
Step 2:	Substitute values into $c^{2}=a^{2}+b^{2}$ and solve for the required value.	a 12

QUESTION 3

Find the unknown length in the following triangle.

Solution

Step \#	Instruction	Your Workings
Step 1:	Label the triangle in terms of a, b and c where c represents the longest side or hypotenuse.	
Step 2:	Substitute values into $c^{2}=a^{2}+b^{2}$ and solve for the required value.	$\begin{aligned} & c^{2}=a^{2}+b^{2} \\ & (2 \sqrt{2})^{2}=2^{2}+b^{2} \\ & 8=4+b^{2} \\ & b^{2}=4 \\ & b=\sqrt{4}=2 \end{aligned}$

QUESTION 4

Find the unknown length in the following triangle.

Solution

Step \#	Instruction	Your Workings
Step 1:	Label the triangle in terms of a, b and c where c represents the longest side or hypotenuse.	
Step 2:	Substitute values into $c^{2}=a^{2}+b^{2}$ and solve for the required value.	$\begin{aligned} & c^{2}=a^{2}+b^{2} \\ & (2.5)^{2}=(1.5)^{2}+b^{2} \\ & 6.25=2.25+b^{2} \\ & b^{2}=4 \\ & b=\sqrt{4}=2 \end{aligned}$

QUESTION 5

Find sin, cos and tan of the angle marked.

Solution

Step \#	Instruction	Your Workings
Step 1:	Label each side of the triangle with its name.	Hypotenuse 13 Adjacent
Step 2:	Substitute known values into SOHCAHTOA.	$\sin \theta=\frac{O}{H}=\frac{5}{13}$
$\cos \theta=\frac{A}{H}=\frac{12}{13}$		

QUESTION 6

Find sin, cos and tan of the angle marked.

12

Solution

Step \#	Instruction	Your Workings
Step 1:	Label each side of the triangle with its name.	Adjacent 9
Step 2:	Substitute known values into SOHCAHTOA.	$\sin \theta=\frac{O}{H}=\frac{12}{15}$
Opposite		

QUESTION 7

In the following diagram, $\cos \theta=\frac{5}{7}$. What is the value of $\sin \theta$?

Solution

Step \#	Instruction	Your Workings
Step 1:	Label each side of the triangle with its name and known value.	$\cos \theta=\frac{5}{7}=\frac{A D J}{H Y P}$
Step 2:	Use Pythagoras' Theorem to find the length of the third side.	$c^{2}=a^{2}+b^{2}$ $7^{2}=5^{2}+b^{2}$ $b^{2}=49-25$ $b=\sqrt{24}=\sqrt{4 \times 6}=2 \sqrt{6}$
Step 3:	State the rule describing the ratio to be found. Then substitute in known values and state the answer.	$\operatorname{SOHCAHTOA}$ $\sin \theta=\frac{O}{H}$

QUESTION 8

In the following diagram, $\tan \theta=\frac{12}{5}$. What is the value of $\cos \theta$?

Solution

Step \#	Instruction	Your Workings
Step 1:	Label each side of the triangle with its name and known value.	$\tan \theta=\frac{12}{5}=\frac{O P P}{A D J}$
Step 2:	Use Pythagoras' Theorem to find the length of the third side.	$c^{2}=a^{2}+b^{2}$ $c^{2}=5^{2}+12^{2}=169$ $c=\sqrt{169}=13$
Step 3:	State the rule describing the ratio to be found. Then substitute in known values and state the answer.	$\operatorname{SOHCAHTOA}$ $\cos \theta=\frac{A}{H}$

QUESTION 9

In the following diagram, $\sin \theta=\frac{8}{17}$. What is the value of $\cos \theta$ and $\tan \theta$?

Solution

Step \#	Instruction	Your Workings
Step 1:	Label each side of the triangle with its name and known value.	$\sin \theta=\frac{8}{17}=\frac{O P P}{H Y P}$
Step 2:	Use Pythagoras' Theorem to find the length of the third side.	$c^{2}=a^{2}+b^{2}$ $17^{2}=a^{2}+8^{2}$ $a^{2}=289-64=225$ $a=\sqrt{225}=15$
Step 3:	State the rule describing the ratio to be found. Then substitute in known values and state the answer.	$\operatorname{SOHCAHTOA}$ $\cos \theta=\frac{A}{H}$ and $\tan \theta=\frac{O}{A}$

QUESTION 10

Find the length of the unknown side given the following triangle. State your answer to 2 decimal places.

Solution

Step \#	Instruction	Your Workings
Step 1:	Determine whether trigonometric ratios can be used.	Does the triangle have a right angle? Yes. Therefore, we can use SOHCAHTOA.
Step 2:	Label each side of the triangle with its name.	Hypotenuse x
Step 3:	Identify the ratio that needs to be used. Use the known and unknown lengths.	SOH CAH TOA
Step 4:	Substitute in known values into the relevant ratio and solve for the unknown length.	$\cos 79^{\circ}=\frac{31}{x}$
	$x=\frac{31}{\cos 79^{\circ}}$	

QUESTION 11

Find the length of the unknown side given the following triangle. State your answer to 2 decimal places.

Solution

Step \#	Instruction	Your Workings
Step 1:	Determine whether trigonometric ratios can be used.	Does the triangle have a right angle? Yes. Therefore, we can use SOHCAHTOA.
Step 2:	Label each side of the triangle with its name.	Opposite 28mm
Step 3:	Identify the ratio that needs to be used. Use the known and unknown lengths.	SOH CAH TOA
Step 4:	Substitute in known values into the relevant ratio and solve for the unknown length.	$\tan 27^{\circ}=\frac{28}{x}$
	tan $\theta=\frac{O}{A}$	

QUESTION 12

Find the following angles correct to 1 decimal place.
(a) $\sin \theta=0.5465$
(b) $\cos \theta=0.707$
(c) $\tan \theta=1.20$

Solution

(a)

Step \#	Instruction	Your Workings
Step 1:	Write the angle in terms of the ratio. $\theta=\sin ^{-1}$ (number)	$\theta=\sin ^{-1}(0.5465)$
Step 2:	Solve for θ using a calculator.	$\theta=33.1^{\circ}$

(b)

Step \#	Instruction	Your Workings
Step 1:	Write the angle in terms of the ratio. $\theta=\sin ^{-1}($ number $)$	$\theta=\cos ^{-1}(0.707)$
Step 2:	Solve for θ using a calculator.	$\theta=45.0^{\circ}$

(c)

Step \#	Instruction	Your Workings
Step 1:	Write the angle in terms of the ratio. $\theta=\sin ^{-1}$ (number)	$\theta=\tan ^{-1}(1.20)$
Step 2:	Solve for θ using a calculator.	$\theta=50.2^{\circ}$

QUESTION 13

Find θ given the following triangle.

Solution

Step \#	Instruction	Your Workings
Step 1:	Determine whether trigonometric ratios can be used.	Does the triangle have a right angle? Yes. Therefore, we can use SOHCAHTOA.
Step 2:	Label the triangle sides with their correct names.	Opposite 12 cm
Step 3:	Identify the ratio that needs to be used. Note that you'll need 2 out of the 3 values in one of the trigonometric ratios.	$\operatorname{soH} \operatorname{CAH}$ TOA $\theta=\frac{O}{H}$
Step 4:	Calculate the value of θ.	$\sin \theta=\frac{O}{H}=\frac{12}{19}$

QUESTION 14

Find θ given the following triangle.

Solution

Step \#	Instruction	Your Workings
Step 1:	Determine whether trigonometric ratios can be used.	Does the triangle have a right angle? Yes. Therefore, we can use SOHCAHTOA.
Step 2:	Label the triangle sides with their correct names.	$\operatorname{SOH} \mathrm{CAH}$ TOA
Step 3:	Identify the ratio that needs to be used. Note that you'll need 2 out of the 3 values in one of the trigonometric ratios.	$\cos \theta=\frac{A}{H}$
Step 4:	Calculate the value of θ.	

QUESTION 15

Find θ given the following triangle.

Solution

Step \#	Instruction	Your Workings
Step 1:	Determine whether trigonometric ratios can be used.	Does the triangle have a right angle? Yes. Therefore, we can use SOHCAHTOA.
Step 2:	Label the triangle sides with their correct names.	
Step 3:	Identify the ratio that needs to be used. Note that you'll need 2 out of the 3 values in one of the trigonometric ratios.	$\operatorname{SOH} \operatorname{CAH}$ TOA
Step 4:	Calculate the value of θ. A	

QUESTION 16

(a) Find θ given the following triangle.
(b) Use trigonometric ratios to find the length of the third side of the triangle.

State your answers to 2 decimal places.

Solution

(a)

Step \#	Instruction	Your Workings
Step 1:	Determine whether trigonometric ratios can be used.	Does the triangle have a right angle? Yes. Therefore, we can use SOHCAHTOA.
Step 2:	Label the triangle sides with their correct names.	Adjacent
Step 3:	Identify the ratio that needs to be used. Note that you'll need 2 out of the 3 values in one of the trigonometric ratios.	$\operatorname{SOH} \operatorname{CAH}$ TOA
Step 4:	Calculate the value of $\theta=\frac{O}{A}$	Tan $\theta=\frac{5}{12}$

(b)

Step \#	Instruction	Your Workings
Step 1:	Determine whether trigonometric ratios can be used.	Does the triangle have a right angle? Yes. Therefore, we can use SOHCAHTOA.
Step 2:	Label each side of the triangle with its name.	Adjacent
Step 3:	Identify the ratio that needs to be used. Use the known and unknown lengths.	$\operatorname{SOH} \operatorname{CAH}$ TOA
Step 4:	Substitute in known values into the relevant ratio and solve for the unknown length.	$\cos 22.62^{\circ}=\frac{12}{H}$
	or $\sin \theta=\frac{O}{H}$	

QUESTION 17

Do the following triangles have a right angle?
(a) $7,8,10$
(b) 2, 4.8, 5.2

Solution

(a)

Step \#	Instruction	Your Workings
Step 1:	Can the given values be obtained by multiplying a common triad by some constant?	No
Step 2:	Does $c^{2}=a^{2}+b^{2} ?$ If YES, the triangle has a right angle. Note that c is always the longest length.$c^{2}=10^{2}=100$ $a^{2}+b^{2}=7^{2}+8^{2}=113$ $c^{2} \neq a^{2}+b^{2}$ Therefore, the triangle is not a right-angled triangle.	

(b)

Step \#	Instruction	Your Workings
Step 1:	Can the given values be obtained by multiplying a common triad by some constant?	Unsure
Step 2:	Does $c^{2}=a^{2}+b^{2} ?$ If YES, the triangle has a right angle. Note that c is always the longest length.$c^{2}=5.2^{2}=27.04$ $a^{2}+b^{2}=4.8^{2}+2^{2}=27.04$ As $c^{2}=a^{2}+b^{2}$, the triangle is a right-angled triangle.	

QUESTION 18

Explain why the unknown length in the below triangle is not equal to 4 cm .

Solution

A known triad is 3, 4, 5. Even though two of the three values are present we cannot automatically assume that the third value is the length of our unknown. For a triad to be valid, the hypotenuse or c must be the longest length, which in this case is 5 cm . As this length belongs to the Opposite or Adjacent side, the triad isn't valid, and $c \neq 4$.

QUESTION 19

Consider the following right-angled triangle.

Show that $x=\frac{\sqrt{3}(1-\sqrt{5})}{3}$.

Solution

Step \#	Instruction	Your Workings
Step 1:	Determine whether trigonometric ratios can be used.	Does the triangle have a right angle? Yes. Therefore, we can use SOHCAHTOA.
Step 2:	Label the triangle sides with their correct names.	
Step 3:	Identify the ratio that needs to be used. Note that you'll need 2 out of the 3 values in one of the trigonometric ratios.	SOH CAH TOA $\tan \theta=\frac{O}{A}$ Opposite $1-\sqrt{5}$
Step 4:	Substitute values into the ratio and solve.	$\tan 60^{\circ}=\frac{1-\sqrt{5}}{x}$
	$x=\frac{1-\sqrt{5}}{\tan 60^{\circ}}=\frac{1-\sqrt{5}}{\sqrt{3}}=\frac{1-\sqrt{5}}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3}}{3}(1-\sqrt{5})$	

