TRIGONOMETRY

SECTION 1: TRIGONOMETRY BASED ON RIGHT ANGLED TRIANGLES

QUESTION 1

Hypotenuse

Find the unknown length in the following triangle.

Step #	Instruction	Your Workings
Step 1:	Label the triangle in terms of a, b and c where c represents the longest side or hypotenuse.	a 12 ? c 7 b
Step 2:	Substitute values into $c^2 = a^2 + b^2$ and solve for the required value.	$c^{2} = a^{2} + b^{2}$ $c^{2} = 12^{2} + 7^{2}$ $c^{2} = 193$ $c = \sqrt{193}$

Find the unknown length in the following triangle.

Step #	Instruction	Your Workings
Step 1:	Label the triangle in terms of a, b and c where c represents the longest side or hypotenuse.	$\begin{array}{c} \mathbf{a} \ 2 \\ \hline 2\sqrt{2} \\ \mathbf{c} \end{array}$
Step 2:	Substitute values into $c^2 = a^2 + b^2$ and solve for the required value.	$c^{2} = a^{2} + b^{2}$ $(2\sqrt{2})^{2} = 2^{2} + b^{2}$ $8 = 4 + b^{2}$ $b^{2} = 4$ $b = \sqrt{4} = 2$

Find the unknown length in the following triangle.

Step #	Instruction	Your Workings
Step 1:	Label the triangle in terms of a, b and c where c represents the longest side or hypotenuse.	$\begin{array}{c} c & 2\frac{1}{2} \\ \hline \\ 1\frac{1}{2} \\ a \end{array}$
Step 2:	Substitute values into $c^2 = a^2 + b^2$ and solve for the required value.	$c^{2} = a^{2} + b^{2}$ $(2.5)^{2} = (1.5)^{2} + b^{2}$ $6.25 = 2.25 + b^{2}$ $b^{2} = 4$ $b = \sqrt{4} = 2$

Find sin, cos and tan of the angle marked.

Step #	Instruction	Your Workings
Step 1:	Label each side of the triangle with its name.	Hypotenuse 13 5 Opposite 12 Adjacent
Step 2:	Substitute known values into SOHCAHTOA.	$\sin \theta = \frac{O}{H} = \frac{5}{13}$ $\cos \theta = \frac{A}{H} = \frac{12}{13}$ $\tan \theta = \frac{O}{A} = \frac{5}{12}$

Find sin, cos and tan of the angle marked.

Step #	Instruction	Your Workings
Step 1:	Label each side of the triangle with its name.	Adjacent 9
Step 2:	Substitute known values into SOHCAHTOA.	$\sin \theta = \frac{O}{H} = \frac{12}{15}$ $\cos \theta = \frac{A}{H} = \frac{9}{15}$ $\tan \theta = \frac{O}{A} = \frac{12}{9} = \frac{4}{3}$

In the following diagram, $\cos \theta = \frac{5}{7}$. What is the value of $\sin \theta$?

Step #	Instruction	Your Workings
Step 1:	Label each side of the triangle with its name and known value.	$\cos \theta = \frac{5}{7} = \frac{ADJ}{HYP}$ 7 Hypotenuse Opposite Adjacent 5
Step 2:	Use Pythagoras' Theorem to find the length of the third side.	$c^{2} = a^{2} + b^{2}$ $7^{2} = 5^{2} + b^{2}$ $b^{2} = 49 - 25$ $b = \sqrt{24} = \sqrt{4 \times 6} = 2\sqrt{6}$
Step 3:	State the rule describing the ratio to be found. Then substitute in known values and state the answer.	SOHCAHTOA $\sin \theta = \frac{O}{H}$ $\sin \theta = \frac{2\sqrt{6}}{7}$

In the following diagram, $\tan \theta = \frac{12}{5}$. What is the value of $\cos \theta$?

Step #	Instruction	Your Workings
Step 1:	Label each side of the triangle with its name and known value.	$\tan \theta = \frac{12}{5} = \frac{OPP}{ADJ}$
		Hypotenuse Opposite 12 Adjacent 5
Step 2:	Use Pythagoras' Theorem to find the length of the third side.	$c^{2} = a^{2} + b^{2}$ $c^{2} = 5^{2} + 12^{2} = 169$ $c = \sqrt{169} = 13$
Step 3:	State the rule describing the ratio to be found. Then substitute in known values and state the answer.	SOHCAHTOA $\cos \theta = \frac{A}{H}$ $\cos \theta = \frac{5}{13}$

In the following diagram, $\sin \theta = \frac{8}{17}$. What is the value of $\cos \theta$ and $\tan \theta$?

Step #	Instruction	Your Workings
Step 1:	Label each side of the triangle with its name and known value.	$\sin\theta = \frac{8}{17} = \frac{OPP}{HYP}$
		Hypotenuse 17 θ Adjacent
Step 2:	Use Pythagoras' Theorem to find the length of the third side.	$c^{2} = a^{2} + b^{2}$ $17^{2} = a^{2} + 8^{2}$ $a^{2} = 289 - 64 = 225$ $a = \sqrt{225} = 15$
Step 3:	State the rule describing the ratio to be found. Then substitute in known values and state the answer.	SOHCAHTOA $\cos \theta = \frac{A}{H}$ and $\tan \theta = \frac{O}{A}$ $\cos \theta = \frac{15}{17}$ and $\tan \theta = \frac{8}{15}$

Find the length of the unknown side given the following triangle. State your answer to 2 decimal places.

Step #	Instruction	Your Workings
Step 1:	Determine whether trigonometric ratios can be used.	Does the triangle have a right angle? Yes. Therefore, we can use SOHCAHTOA.
Step 2:	Label each side of the triangle with its name.	Hypotenuse x 31cm Adjacent
Step 3:	Identify the ratio that needs to be used. Use the known and unknown lengths.	SOH CAH TOA $\cos \theta = \frac{A}{H}$
Step 4:	Substitute in known values into the relevant ratio and solve for the unknown length.	$\cos 79^{\circ} = \frac{31}{x}$ $x = \frac{31}{\cos 79^{\circ}}$ $x = 162.47 \ cm$

Find the length of the unknown side given the following triangle. State your answer to 2 decimal places.

Step #	Instruction	Your Workings
Step 1:	Determine whether trigonometric ratios can be used.	Does the triangle have a right angle? Yes. Therefore, we can use SOHCAHTOA.
Step 2:	Label each side of the triangle with its name.	Adjacent x 27° Opposite 28mm
Step 3:	Identify the ratio that needs to be used. Use the known and unknown lengths.	SOH CAH T OA $\tan \theta = \frac{O}{A}$
Step 4:	Substitute in known values into the relevant ratio and solve for the unknown length.	$\tan 27^{\circ} = \frac{28}{x}$ $x = \frac{28}{\tan 27^{\circ}}$ $x = 54.95 mm$

Find the following angles correct to 1 decimal place.

- (a) $\sin \theta = 0.5465$
- (b) $\cos \theta = 0.707$
- (c) $\tan \theta = 1.20$

Solution

(a)

Step #	Instruction	Your Workings
Step 1:	Write the angle in terms of the ratio. $\theta = \sin^{-1}(number)$	$\theta = \sin^{-1}(0.5465)$
Step 2:	Solve for θ using a calculator.	$\theta = 33.1^{\circ}$

(b)

Step #	Instruction	Your Workings
Step 1:	Write the angle in terms of the ratio. $\theta = \sin^{-1}(number)$	$\theta = \cos^{-1}(0.707)$
Step 2:	Solve for θ using a calculator.	$\theta = 45.0^{\circ}$

(C)

Step #	Instruction	Your Workings
Step 1:	Write the angle in terms of the ratio. $\theta = \sin^{-1}(number)$	$\theta = \tan^{-1}(1.20)$
Step 2:	Solve for θ using a calculator.	$\theta = 50.2^{\circ}$

Find θ given the following triangle.

Step #	Instruction	Your Workings
Step 1:	Determine whether trigonometric ratios can be used.	Does the triangle have a right angle? Yes. Therefore, we can use SOHCAHTOA.
Step 2:	Label the triangle sides with their correct names.	Opposite 2cm
Step 3:	Identify the ratio that needs to be used. Note that you'll need 2 out of the 3 values in one of the trigonometric ratios.	SOH CAH TOA $\sin \theta = \frac{O}{H}$
Step 4:	Calculate the value of θ .	$\sin \theta = \frac{O}{H} = \frac{12}{19}$ $\theta = \sin^{-1} \left(\frac{12}{19}\right) = 39.17^{\circ}$

Find θ given the following triangle.

Step #	Instruction	Your Workings
Step 1:	Determine whether trigonometric ratios can be used.	Does the triangle have a right angle? Yes. Therefore, we can use SOHCAHTOA.
Step 2:	Label the triangle sides with their correct names.	Adjacent 8m 0 10m Hypotenuse
Step 3:	Identify the ratio that needs to be used. Note that you'll need 2 out of the 3 values in one of the trigonometric ratios.	SOH CAH TOA $\cos \theta = \frac{A}{H}$
Step 4:	Calculate the value of θ .	$\cos \theta = \frac{8}{10} = \frac{4}{5} = 0.8$ $\theta = \cos^{-1}(0.8) = 36.87^{\circ}$

Find θ given the following triangle.

Step #	Instruction	Your Workings
Step 1:	Determine whether trigonometric ratios can be used.	Does the triangle have a right angle? Yes. Therefore, we can use SOHCAHTOA.
Step 2:	Label the triangle sides with their correct names.	20cm Opposite 0 15 cm Adjacent
Step 3:	Identify the ratio that needs to be used. Note that you'll need 2 out of the 3 values in one of the trigonometric ratios.	SOH CAH T OA $\tan \theta = \frac{O}{A}$
Step 4:	Calculate the value of θ .	$\tan \theta = \frac{O}{A} = \frac{20}{15} = \frac{4}{3}$ $\theta = \tan^{-1} \left(\frac{4}{3}\right) = 53.13^{\circ}$

- (a) Find θ given the following triangle.
- (b) Use trigonometric ratios to find the length of the third side of the triangle.

State your answers to 2 decimal places.

(8	A)
`	

1	h	١
V	υ	1

Step #	Instruction	Your Workings
Step 1:	Determine whether trigonometric ratios can be used.	Does the triangle have a right angle? Yes. Therefore, we can use SOHCAHTOA.
Step 2:	Label each side of the triangle with its name.	θ 12 Adjacent
Step 3:	Identify the ratio that needs to be used. Use the known and unknown lengths.	SOH CAH TOA $\cos \theta = \frac{A}{H}$ or $\sin \theta = \frac{O}{H}$
Step 4:	Substitute in known values into the relevant ratio and solve for the unknown length.	$\cos 22.62^{\circ} = \frac{12}{H}$ $H = \frac{12}{\cos 22.62^{\circ}} = 13.00$

Do the following triangles have a right angle?

- (a) 7, 8, 10 (b) 2, 4.8, 5.2

Solution

(a)

Step #	Instruction	Your Workings
Step 1:	Can the given values be obtained by multiplying a common triad by some constant?	No
Step 2:	Does $c^2 = a^2 + b^2$? If YES, the triangle has a right angle. Note that <i>c</i> is always the longest length.	$c^{2} = 10^{2} = 100$ $a^{2} + b^{2} = 7^{2} + 8^{2} = 113$ $c^{2} \neq a^{2} + b^{2}$ Therefore, the triangle is not a right-angled triangle.

(b)

Step #	Instruction	Your Workings
Step 1:	Can the given values be obtained by multiplying a common triad by some constant?	Unsure
Step 2:	Does $c^2 = a^2 + b^2$? If YES, the triangle has a right angle. Note that <i>c</i> is always the longest length.	$c^{2} = 5.2^{2} = 27.04$ $a^{2} + b^{2} = 4.8^{2} + 2^{2} = 27.04$ As $c^{2} = a^{2} + b^{2}$, the triangle is a right-angled triangle.

Explain why the unknown length in the below triangle is not equal to 4 cm.

Solution

A known triad is 3, 4, 5. Even though two of the three values are present we cannot automatically assume that the third value is the length of our unknown. For a triad to be valid, the hypotenuse or c must be the longest length, which in this case is 5 cm. As this length belongs to the Opposite or Adjacent side, the triad isn't valid, and $c \neq 4$.

Show that
$$x = \frac{\sqrt{3}(1-\sqrt{5})}{3}$$

Step #	Instruction	Your Workings
Step 1:	Determine whether trigonometric ratios can be used.	Does the triangle have a right angle? Yes. Therefore, we can use SOHCAHTOA.
Step 2:	Label the triangle sides with their correct names.	Hypotenuse Opposite $1 - \sqrt{5}$ Adjacent x
Step 3:	Identify the ratio that needs to be used. Note that you'll need 2 out of the 3 values in one of the trigonometric ratios.	SOH CAH T OA $\tan \theta = \frac{O}{A}$
Step 4:	Substitute values into the ratio and solve.	$\tan 60^{\circ} = \frac{1 - \sqrt{5}}{x}$ $x = \frac{1 - \sqrt{5}}{\tan 60^{\circ}} = \frac{1 - \sqrt{5}}{\sqrt{3}} = \frac{1 - \sqrt{5}}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{\sqrt{3}}{3}(1 - \sqrt{5})$