Pythagoras' Theorem

$$
c^{2}=a^{2}+b^{2}
$$

Trigonometric Ratios
Rules that Can be Used With Right-Angled Triangles

SOHCAHTOA

Triangle Notation

For right-angled triangles only

$$
c^{2}=a^{2}+b^{2}
$$

Pythagoras' Theorem
Used to find the length of the third side when the other 2 sides are known

Sine (sin), cosine (cos) and tangent (tan) are ratios of two sides in a right-angled triangle.

Trigonometric Ratios
$\sin \theta=\frac{\text { length of the opposite side }}{\text { length of the hypotenuse }}=\frac{O}{H}$

Sine Ratio

$\cos \theta=\frac{\text { length of the adjacent side }}{\text { length of the hypotenuse }}=\frac{A}{H}$

Cosine Ratio

$\tan \theta=\frac{\text { length of the opposite side }}{\text { length of the adjacent side }}=\frac{O}{A}$
Tangent Ratio

$$
\tan \theta=\frac{\sin \theta}{\cos \theta}
$$

Relationship Between Sine, Cosine and Tangent

To find the value of a ratio
To find θ when 2 lengths are known
To find a length when another length and θ are known

When Do We Use Trigonometric Ratios?

SOH CAH TOA

Summary of Trigonometric Ratios

If $\sin \theta=$ number
angle ratio of 2 side lengths
Relationship Between an Angle and a Ratio

Use Pythagoras' Theorem to calculate the length of the third side.

Use a trigonometric ratio to find one of the angles.

Finding All Missing Angles and
Sides of a Triangle When 2 Sides are Known
Find the last angle by subtracting known angles from 180°.

Use a trigonometric ratio to find the length of one missing side.

Use Pythagoras' Theorem to calculate the length of the third side.

Find the last angle by subtracting known angles from 180°.

Finding All Missing Angles and Sides of a Triangle When 1 Side and 1 Angle are Known

SOH CAH TOA Pyramids

3, 4, 5
5, 12, 13
7, 24, 25
8, 15, 17

Common Triplets

where the longest side is the hypotenuse.

If a triplet exists, the triangle must be a right-angled triangle and therefore, $c^{2}=a^{2}+b^{2}$.

Pythagoras' Theorem
and Triplets

$$
\begin{aligned}
& \cos 30^{\circ}=\frac{\sqrt{3}}{2} \\
& \sin 30^{\circ}=\frac{1}{2} \\
& \tan 30^{\circ}=\frac{1}{\sqrt{3}}
\end{aligned}
$$

Exact Values Based on 30°

$\cos 45^{\circ}=\frac{1}{\sqrt{2}}$
$\sin 45^{\circ}=\frac{1}{\sqrt{2}}$
$\tan 45^{\circ}=1$
Exact Values Based on 45°
$\cos 60^{\circ}=\frac{1}{2}$
$\sin 60^{\circ}=\frac{\sqrt{3}}{2}$
$\tan 60^{\circ}=\sqrt{3}$
Exact Values Based on 60°
$\cos 0^{\circ}=1$
$\sin 0^{\circ}=0$
Exact Values Based on 0°
$\tan 0^{\circ}=0$

```
cos90
sin}9\mp@subsup{0}{}{\circ}=
tan90
```

 Exact Values Based on \(90^{\circ}\)