CASE 4:

m and n are both odd and positive.
There is a choice between CASE 2 and CASE 3. Make the choice that leads to the least amount of work.

CASE 5:

m and n are both even and positive.
Use the following identities (derived from the double angle formulae):

$$
\begin{array}{ll}
\sin (A) \cos (A)=\frac{1}{2} \sin (2 A) & \sin ^{2}(A)+\cos ^{2}(A)=1 \\
\sin ^{2}(A)=\frac{1}{2}(1-\cos (2 A)) & \\
\cos ^{2}(A)=\frac{1}{2}(1+\cos (2 A)) &
\end{array}
$$

This will convert the given problem into separate CASE 0 - CASE 3 problems.

PARTIAL FRACTION DECOMPOSITION

If we add $\frac{3}{x+7}$ to $\frac{5}{x-3}$ we get:
$\frac{3}{x+7}+\frac{5}{x-3}=\frac{3(x-3)+5(x+7)}{(x+7)(x-3)}=\frac{3 x-9+5 x+35}{(x+7)(x-3)}=\frac{8 x+26}{(x+7)(x-3)}$
However, there are times when we need to split a fraction such as $\frac{8 x+26}{(x+7)(x-3)}$ into its separate fractional parts, that is, into $\frac{3}{x+7}+\frac{5}{x-3}$.

This process is called partial fraction decomposition. It is done in order to anti-differentiate rational functions.

CAS CAN DO THIS FOR YOU

$$
\left\lvert\, \begin{aligned}
\operatorname{expand}\left(\frac{8 \cdot x+26}{(x+7) \cdot(x-3)},\right. & x) \\
& \frac{3}{x+7}+\frac{5}{x-3}
\end{aligned}\right.
$$

RATIONAL FUNCTIONS

A rational function is any function of the form $\frac{N(x)}{D(x)}$, where $N(x)$ and $D(x)$ are polynomials. In the VCE Specialist Mathematics 3-4 course, only rational functions where $D(x)$ = quadratic are considered.

$$
\begin{gathered}
N(x)=\text { constant or } N(x)=\text { linear (that is, the degree of } N(x) \\
\text { is less than the degree of } D(x)) .
\end{gathered}
$$

Step 1: Factorise $D(x)$ into its real linear factors.

Step 2: Express $\frac{N(x)}{D(x)}$ as the sum of two fractions. This is the partial fraction decomposition of $\frac{N(x)}{D(x)}$.

Type 1:

$D(x)$ has two distinct linear factors, that is $D(x)=(a x+b)(c x+d)$.
Then $\frac{N(x)}{D(x)}=\frac{A}{a x+b}+\frac{B}{c x+d}$, where A and B are constants.

Type 2:

$D(x)$ has repeated linear factors, that is, $D(x)=(a x+b)^{2}$.
Then $\frac{N(x)}{D(x)}=\frac{A}{a x+b}+\frac{B}{(a x+b)^{2}}$, where A and B are constants.

Type 3:

$D(x)$ has no real linear factors, that is, $D(x)$ is an irreducible quadratic.
Then $\frac{N(x)}{D(x)}$ cannot be expressed in partial fraction form, unless there is another factor multiplied by it.

Step 3: Determine the values of the constants A and B by comparing $\frac{N(x)}{D(x)}$ with its partial fraction form (re-write over a common denominator and equate numerators).

PARTIAL FRACTIONS

TYPE I: FACTORISABLE DENOMINATOR

$$
\frac{\text { something }}{(x+a)(x+b)}=\frac{A}{(x+a)}+\frac{B}{(x+b)}
$$

Example:

$\frac{2}{x^{2}+4 x+3}=\frac{2}{(x+1)(x+3)}=\frac{A}{(x+1)}+\frac{B}{(x+3)}$
Giving:
$\frac{2}{(x+1)(x+3)}=\frac{A(x+3)+B(x+1)}{(x+1)(x+3)}$
Equate numerators:
$1=A(x+3)+B(x+1)$
Let $\left\{\begin{array}{l}x=-3 \therefore 2=-2 B \therefore B=-1 \\ x=-1 \therefore 2=2 A \therefore A=1\end{array}\right.$
Giving $\frac{2}{x^{2}+4 x+3}=\frac{1}{(x+1)}-\frac{1}{(x+3)}$

On a CASIO ClassPad:

$$
\text { expand }\left(\frac{2}{x^{2}+4 \cdot x+3}, x\right)
$$

$$
\frac{-1}{x+3}+\frac{1}{x+1}
$$

TYPE II: REPEATED FACTOR ON DENOMINATOR

$$
\frac{\text { something }}{(x+a)^{2}(x+b)}=\frac{A}{(x+a)^{2}}+\frac{B}{(x+a)}+\frac{C}{(x+b)}
$$

Example:

$\frac{2 x}{(x+1)^{2}(x+3)}=\frac{A}{(x+1)^{2}}+\frac{B}{(x+1)}+\frac{C}{(x+3)}$
Giving:
$\frac{2 x}{(x+1)^{2}(x+3)}=\frac{A(x+3)+B(x+1)(x+3)+C(x+1)^{2}}{(x+1)^{2}(x+3)}$
Equate numerators:
$2 x=A(x+3)+B(x+1)(x+3)+C(x+1)^{2}$
Let $\left\{\begin{array}{l}x=-3 \therefore-6=4 C \therefore C=-\frac{3}{2} \\ x=-1 \therefore-2=2 A \therefore A=-1 \\ x=0 \therefore 0=3 A+3 B+C\end{array}\right.$
Substitute and solve $0=3 A+3 B+C$ to get $0=-3+3 B-\frac{3}{2}$
Giving $A=-1, B=\frac{3}{2}, C=-\frac{3}{2}$
Giving $\frac{2 x}{(x+1)^{2}(x+3)}=\frac{-1}{(x+1)^{2}}+\frac{3}{2(x+1)}-\frac{3}{2(x+3)}$

On a CASIO ClassPad:

TYPE III: NON-REDUCIBLE FACTOR ON DENOMINATOR

$$
\frac{\text { something }}{\left(a x^{2}+b x+c\right)(x+d)}=\frac{A x+B}{a x^{2}+b x+c}+\frac{C}{x+d} \text { in the case where } \Delta\left(a x^{2}+b x+c\right)<0
$$

Example 1

$$
\frac{2 x+1}{\left(x^{2}+x+2\right)(x+5)}=\frac{A x+B}{\left(x^{2}+x+2\right)}+\frac{C}{(x+5)} \text { where } \Delta\left(x^{2}+x+2\right)=1-4(1)(2)=-7<0
$$

Giving:

$$
\frac{2 x+1}{\left(x^{2}+x+2\right)(x+5)}=\frac{(A x+B)(x+5)+C\left(x^{2}+x+2\right)}{\left(x^{2}+x+2\right)(x+5)}
$$

Equate numerators:

$$
2 x+1=(A x+B)(x+5)+C\left(x^{2}+x+2\right)
$$

Let $\left\{\begin{array}{l}x=-5 \therefore-9=22 C \therefore C=-\frac{9}{22} \\ x=1 \therefore 3=6(A+B)+4 C \\ x=0 \therefore 1=5 B+2 C\end{array}\right.$
Substitute and solve $1=5 B+2 C$ to get $1=5 B-\frac{9}{11} \therefore B=\frac{4}{11}$
Substitute and solve $3=6(A+B)+4 C$ to get $3=6\left(A+\frac{4}{11}\right)-\frac{18}{11} \therefore A=\frac{9}{22}$
Giving $A=\frac{9}{22}, B=\frac{4}{11}, C=-\frac{9}{22}$
Giving $\frac{2 x+1}{\left(x^{2}+x+2\right)(x+5)}=\frac{\frac{9}{22} x+\frac{4}{11}}{\left(x^{2}+x+2\right)}-\frac{\frac{9}{22}}{(x+5)}$
$\mathrm{OR} \frac{2 x+1}{\left(x^{2}+x+2\right)(x+5)}=\frac{9 x+8}{22\left(x^{2}+x+2\right)}-\frac{9}{22(x+5)}$
On a CASIO ClassPad:

Example 2

$\frac{x}{\left(x^{2}+2 x+3\right)(x+1)}=\frac{A x+B}{\left(x^{2}+2 x+3\right)}+\frac{C}{(x+1)}$ where $\Delta\left(x^{2}+2 x+3\right)=4-4(1)(3)=-8<0$
Giving
$\frac{x}{\left(x^{2}+2 x+3\right)(x+1)}=\frac{(A x+B)(x+1)+C\left(x^{2}+2 x+3\right)}{\left(x^{2}+2 x+3\right)(x+1)}$
Equate numerators
$x=(A x+B)(x+1)+C\left(x^{2}+2 x+3\right)$
Let $\left\{\begin{array}{l}x=-1 \therefore-1=2 C \therefore C=-\frac{1}{2} \\ x=1 \therefore 1=2(A+B)+6 C \\ x=0 \therefore 0=B+3 C\end{array}\right.$
Substitute and solve $0=B+3 C$ to get $0=B-\frac{3}{2} \therefore B=\frac{3}{2}$
Substitute and solve $1=2(A+B)+6 C$ to get $1=2\left(A+\frac{3}{2}\right)-3 \therefore A=\frac{1}{2}$
Giving $A=\frac{1}{2}, B=\frac{3}{2}, C=-\frac{1}{2}$
Giving $\frac{x}{\left(x^{2}+2 x+3\right)(x+1)}=\frac{\frac{1}{2} x+\frac{3}{2}}{\left(x^{2}+x+2\right)}-\frac{\frac{1}{2}}{(x+5)}$
OR $\frac{x}{\left(x^{2}+2 x+3\right)(x+1)}=\frac{x+3}{2\left(x^{2}+x+2\right)}-\frac{1}{2(x+5)}$

On a CASIO ClassPad:

\% Edit Action Interactive						
$\stackrel{0.5}{4} \frac{1}{2}$	(h)	$\left[\begin{array}{c}{[d x} \\ \mathrm{ddx}\end{array}\right]$	Simp	$\xrightarrow{\text { dax }}$	V	
expand $\left(\frac{x}{\left(x^{2}+2 x+3\right)(x+1)}, x\right)$						
$\overline{2 \cdot\left(x^{2}+2 \cdot x+3\right)}-\frac{1}{2 \cdot(x+1)}$						

$\mathbf{N}(X)=$ POLYNOMIAL OF DEGREE 2 OR HIGHER

(For example, quadratic, cubic etc.) (That is, the degree of $\mathrm{N}(\mathrm{x})$ is greater than or equal to the degree of $D(x)$.)

Step 1: Use polynomial long division:

Where $R(x)$ will be either a constant or a linear.
Step 2: Express $\frac{R(x)}{D(x)}$ in partial fraction form.
SUMMARY

Expression	Partial Fractions	Examples
$\frac{a x+b}{(c x+d)(e x+f)}$	$\frac{A}{c x+d}+\frac{B}{e x+f}$	$\frac{3 x-1}{(x-2)(2 x-3)} \equiv \frac{A}{(x-2)}+\frac{B}{(2 x-3)}$
$\frac{a x+b}{(p x+q)^{2}}$	$\frac{A}{(p x+q)}+\frac{B}{(p x+q)^{2}}$	$\frac{5 x+2}{(x-3)^{2}} \equiv \frac{A}{(x-3)}+\frac{B}{(x-3)^{2}}$
$\frac{a x+b}{\left(m x^{2}+n x+r\right)(p x+q)}$	$\frac{A x+B}{\left(m x^{2}+n x+r\right)}+\frac{C}{(p x+q)}$	$\frac{2 x+1}{\left(3 x^{2}+x+2\right)(3 x+1)}$
Where $x^{2}+n x+r$ is a non reducible quadratic	$=\frac{A x+B}{\left(3 x^{2}+x+2\right)}+\frac{C}{(3 x+1)}$	

If the denominator of a rational expression is not factorised, then factorise it first before splitting it into partial fractions.
E.g. $\frac{1-2 x}{x^{2}-3 x-10} \equiv \frac{A}{(x-5)}+\frac{B}{(x+2)}$

If the degree of the numerator of a rational expression is greater than or equal to the denominator, then divide the denominator into the numerator first before splitting the fractional part into partial fractions.
E.g. $\frac{3 x^{3}+7 x^{2}-4 x+5}{x^{2}+3 x-4} \equiv 3 x-2+\frac{14 x-3}{x^{2}+3 x-4} \equiv 3 x-2+\frac{A}{(x+4)}+\frac{B}{(x-1)}$

