CASE 4:

m and *n* are both odd and positive.

There is a choice between **CASE 2** and **CASE 3**. Make the choice that leads to the least amount of work.

CASE 5:

m and *n* are both even and positive.

Use the following identities (derived from the double angle formulae):

 $\sin(A)\cos(A) = \frac{1}{2}\sin(2A) \qquad \sin^{2}(A) + \cos^{2}(A) = 1$ $\sin^{2}(A) = \frac{1}{2}(1 - \cos(2A))$ $\cos^{2}(A) = \frac{1}{2}(1 + \cos(2A))$

This will convert the given problem into separate **CASE 0** – **CASE 3** problems.

PARTIAL FRACTION DECOMPOSITION

If we add $\frac{3}{x+7}$ to $\frac{5}{x-3}$ we get: $\frac{3}{x+7} + \frac{5}{x-3} = \frac{3(x-3)+5(x+7)}{(x+7)(x-3)} = \frac{3x-9+5x+35}{(x+7)(x-3)} = \frac{8x+26}{(x+7)(x-3)}$ However, there are times when we need to split a fraction such as $\frac{8x+26}{(x+7)(x-3)}$ into its separate fractional parts, that is, into $\frac{3}{x+7} + \frac{5}{x-3}$.

This process is called partial fraction decomposition. It is done in order to anti-differentiate rational functions.

CAS CAN DO THIS FOR YOU

expand
$$\left(\frac{8\cdot x+26}{(x+7)\cdot (x-3)}, x\right)$$

 $\frac{3}{x+7}+\frac{5}{x-3}$

RATIONAL FUNCTIONS

A rational function is any function of the form $\frac{N(x)}{D(x)}$, where N(x) and D(x) are polynomials.

In the VCE Specialist Mathematics 3-4 course, only rational functions where D(x) = quadratic are considered.

N(x) = constant or N(x) = linear (that is, the degree of N(x) is less than the degree of D(x)).

- **Step 1:** Factorise D(x) into its real linear factors.
- **Step 2:** Express $\frac{N(x)}{D(x)}$ as the sum of two fractions. This is the partial fraction decomposition of $\frac{N(x)}{D(x)}$.

Type 1:

D(x) has two distinct linear factors, that is D(x) = (ax + b)(cx + d).

Then $\frac{N(x)}{D(x)} = \frac{A}{ax+b} + \frac{B}{cx+d}$, where A and B are constants.

Type 2:

$$D(x)$$
 has repeated linear factors, that is, $D(x) = (ax+b)^2$.
Then $\frac{N(x)}{D(x)} = \frac{A}{ax+b} + \frac{B}{(ax+b)^2}$, where A and B are constants.

Type 3:

D(x) has no real linear factors, that is, D(x) is an irreducible quadratic.

Then $\frac{N(x)}{D(x)}$ cannot be expressed in partial fraction form, unless there is another factor multiplied by it.

Step 3: Determine the values of the constants *A* and *B* by comparing $\frac{N(x)}{D(x)}$ with its partial fraction form (re-write over a common denominator and equate numerators).

PARTIAL FRACTIONS

TYPE I: FACTORISABLE DENOMINATOR

$$\frac{something}{(x+a)(x+b)} = \frac{A}{(x+a)} + \frac{B}{(x+b)}$$

Example:

$$\frac{2}{x^2 + 4x + 3} = \frac{2}{(x+1)(x+3)} = \frac{A}{(x+1)} + \frac{B}{(x+3)}$$

Giving:

$$\frac{2}{(x+1)(x+3)} = \frac{A(x+3) + B(x+1)}{(x+1)(x+3)}$$

Equate numerators:

$$1 = A(x+3) + B(x+1)$$
Let $\begin{cases} x = -3 \therefore 2 = -2B \therefore B = -1 \\ x = -1 \therefore 2 = 2A \therefore A = 1 \end{cases}$
Giving $\frac{2}{x^2 + 4x + 3} = \frac{1}{(x+1)} - \frac{1}{(x+3)}$

$$\left\| expand(\frac{2}{x^2 + 4 \cdot x + 3}, x) - \frac{1}{x+3} + \frac{1}{x+1} \right\|$$
On a CASIO ClassPad:

TYPE II: REPEATED FACTOR ON DENOMINATOR

$$\frac{something}{\left(x+a\right)^{2}\left(x+b\right)} = \frac{A}{\left(x+a\right)^{2}} + \frac{B}{\left(x+a\right)} + \frac{C}{\left(x+b\right)}$$

Example:

$$\frac{2x}{(x+1)^{2}(x+3)} = \frac{A}{(x+1)^{2}} + \frac{B}{(x+1)} + \frac{C}{(x+3)}$$

Giving:

$$\frac{2x}{(x+1)^{2}(x+3)} = \frac{A(x+3) + B(x+1)(x+3) + C(x+1)^{2}}{(x+1)^{2}(x+3)}$$

Equate numerators:

$$2x = A(x+3) + B(x+1)(x+3) + C(x+1)^{2}$$

Let
$$\begin{cases} x = -3 \therefore -6 = 4C \therefore C = -\frac{3}{2} \\ x = -1 \therefore -2 = 2A \therefore A = -1 \\ x = 0 \therefore 0 = 3A + 3B + C \end{cases}$$

Substitute and solve 0=3A+3B+C to get $0=-3+3B-\frac{3}{2}$ Civing A=1 $B=\frac{3}{2}$ $C=\frac{3}{2}$

Giving
$$A = -1, B = \frac{-1}{2}, C = -\frac{-1}{2}$$

Giving
$$\frac{2x}{(x+1)^2(x+3)} = \frac{-1}{(x+1)^2} + \frac{3}{2(x+1)} - \frac{3}{2(x+3)}$$

0	🜣 Edit Action Interactive 🖂							
0.5 <u>1</u> 1→2	₼►	∫dx ∫dx↓	Simp	<u>fdx</u>	Ŧ	₩	Ŧ	4
expand $\left(\frac{2x}{(x+1)^2(x+3)}, x\right)$ $\frac{-3}{2 \cdot (x+3)} + \frac{3}{2 \cdot (x+1)} - \frac{1}{(x+1)^2}$								

On a CASIO ClassPad:

TYPE III: NON-REDUCIBLE FACTOR ON DENOMINATOR

 $\frac{something}{\left(ax^2+bx+c\right)\left(x+d\right)} = \frac{Ax+B}{ax^2+bx+c} + \frac{C}{x+d} \text{ in the case where } \Delta\left(ax^2+bx+c\right) < 0$

Example 1

$$\frac{2x+1}{\left(x^2+x+2\right)\left(x+5\right)} = \frac{Ax+B}{\left(x^2+x+2\right)} + \frac{C}{\left(x+5\right)} \text{ where } \Delta\left(x^2+x+2\right) = 1 - 4(1)(2) = -7 < 0$$

Giving:

$$\frac{2x+1}{(x^2+x+2)(x+5)} = \frac{(Ax+B)(x+5)+C(x^2+x+2)}{(x^2+x+2)(x+5)}$$

Equate numerators:

$$2x + 1 = (Ax + B)(x + 5) + C(x^{2} + x + 2)$$

Let
$$\begin{cases} x = -5 \therefore -9 = 22C \therefore C = -\frac{9}{22} \\ x = 1 \therefore 3 = 6(A+B) + 4C \\ x = 0 \therefore 1 = 5B + 2C \end{cases}$$

Substitute and solve 1 = 5B + 2C to get $1 = 5B - \frac{9}{11}$. $B = \frac{4}{11}$

Substitute and solve 3 = 6(A+B) + 4C to get $3 = 6\left(A + \frac{4}{11}\right) - \frac{18}{11}$. $A = \frac{9}{22}$

Giving
$$A = \frac{9}{22}, B = \frac{4}{11}, C = -\frac{9}{22}$$

Giving
$$\frac{2x+1}{(x^2+x+2)(x+5)} = \frac{\frac{9}{22}x+\frac{4}{11}}{(x^2+x+2)} - \frac{\frac{9}{22}}{(x+5)}$$

OR
$$\frac{2x+1}{(x^2+x+2)(x+5)} = \frac{9x+8}{22(x^2+x+2)} - \frac{9}{22(x+5)}$$

On a CASIO ClassPad:

Example 2

$$\frac{x}{\left(x^2+2x+3\right)\left(x+1\right)} = \frac{Ax+B}{\left(x^2+2x+3\right)} + \frac{C}{\left(x+1\right)} \text{ where } \Delta\left(x^2+2x+3\right) = 4-4(1)(3) = -8 < 0$$

Giving

$$\frac{x}{(x^2+2x+3)(x+1)} = \frac{(Ax+B)(x+1)+C(x^2+2x+3)}{(x^2+2x+3)(x+1)}$$

Equate numerators

$$x = (Ax + B)(x + 1) + C(x^{2} + 2x + 3)$$

Let
$$\begin{cases} x = -1 \therefore -1 = 2C \therefore C = -\frac{1}{2} \\ x = 1 \therefore 1 = 2(A + B) + 6C \\ x = 0 \therefore 0 = B + 3C \end{cases}$$

Substitute and solve 0 = B + 3C to get $0 = B - \frac{3}{2}$. $B = \frac{3}{2}$ Substitute and solve 1 = 2(A+B) + 6C to get $1 = 2\left(A + \frac{3}{2}\right) - 3$. $A = \frac{1}{2}$

Giving
$$A = \frac{1}{2}, B = \frac{3}{2}, C = -\frac{1}{2}$$

Giving $\frac{x}{(x^2 + 2x + 3)(x + 1)} = \frac{\frac{1}{2}x + \frac{3}{2}}{(x^2 + x + 2)} - \frac{\frac{1}{2}}{(x + 5)}$

OR
$$\frac{x}{(x^2+2x+3)(x+1)} = \frac{x+3}{2(x^2+x+2)} - \frac{1}{2(x+5)}$$

On a CASIO ClassPad:	🗢 Edit Action Interactive 🖂				
	$ \stackrel{0.5}{\stackrel{1}{\rightarrowtail} 2} (\stackrel{fdx}{ }) = $				
	expand $\left(\frac{x}{(x^2+2x+3)(x+1)}, x\right)$ $\frac{x+3}{2 \cdot (x^2+2 \cdot x+3)} - \frac{1}{2 \cdot (x+1)}$				

N(X) = POLYNOMIAL OF DEGREE 2 OR HIGHER

(For example, quadratic, cubic etc.) (That is, the degree of N(x) is greater than or equal to the degree of D(x).)

Step 1: Use polynomial long division:

$$\begin{array}{c}
\frac{Q(x)}{D(x)} \\
\frac{D(x)}{R(x)} \\
\vdots \\
\frac{R(x)}{R(x)}
\end{array} \Rightarrow \frac{N(x)}{D(x)} = Q(x) + \frac{R(x)}{D(x)},$$

Where R(x) will be either a constant or a linear.

Step 2: Express $\frac{R(x)}{D(x)}$ in partial fraction form.

Expression	Partial Fractions	Examples				
$\frac{ax+b}{(cx+d)(ex+f)}$	$\frac{A}{cx+d} + \frac{B}{ex+f}$	$\frac{3x-1}{(x-2)(2x-3)} = \frac{A}{(x-2)} + \frac{B}{(2x-3)}$				
$\frac{ax+b}{\left(px+q\right)^2}$	$\frac{A}{\left(px+q\right)} + \frac{B}{\left(px+q\right)^2}$	$\frac{5x+2}{(x-3)^2} = \frac{A}{(x-3)} + \frac{B}{(x-3)^2}$				
$\frac{ax+b}{(mx^{2}+nx+r)(px+q)}$ Where $mx^{2}+nx+r$ is a non reducible quadratic	$\frac{Ax+B}{\left(mx^{2}+nx+r\right)}+\frac{C}{\left(px+q\right)}$	$\frac{2x+1}{(3x^2+x+2)(3x+1)} = \frac{Ax+B}{(3x^2+x+2)} + \frac{C}{(3x+1)}$				

SUMMARY

If the denominator of a rational expression is not factorised, then factorise it first before splitting it into partial fractions.

E.g.
$$\frac{1-2x}{x^2-3x-10} = \frac{A}{(x-5)} + \frac{B}{(x+2)}$$

If the degree of the numerator of a rational expression is greater than or equal to the denominator, then divide the denominator into the numerator first before splitting the fractional part into partial fractions.

E.g.
$$\frac{3x^3 + 7x^2 - 4x + 5}{x^2 + 3x - 4} \equiv 3x - 2 + \frac{14x - 3}{x^2 + 3x - 4} \equiv 3x - 2 + \frac{A}{(x+4)} + \frac{B}{(x-1)}$$