WORKSHEET 3: Naming Compounds and Nomenclature

Rules to apply:

A. Binary compounds - Metals + Nonmetals

A binary compound is one containing only two elements.

- 1. The element with the <u>lower electronegativity is named first</u>, followed by the element with higher electronegativity. Metal is named first, usually.
- 2. The suffix of the second element is changed to -ide.

CaO = Calcium oxide $CaCl_2 = Calcium$ chloride CaS = Calcium sulfide $CaH_2 = Calcium$ hydride

- 3. The ammonium ion, NH_4^+ , the hydroxide ion, OH^- ; and the cyanide ion, CN^- retain their <u>-ide</u> suffix. $NH_4OH = Ammonium \ hydroxide$ $NaCN = Sodium \ cyanide$
- 4. Transition metal capable of more than one oxidation state use <u>roman numerals</u> in their name to indicate their oxidation state. Place in () .

5. Mercury I is a diatomic ion; therefore, it is found in the Hg₂⁺² form only. Mercury II is Hg⁺².

Apply the above rules as you name the following compounds:

1. Ca(OH) ₂	1	1. k	K(CN)	
2. AICl ₃	1	2. N	MgO	
3. Fel ₂		3. F	PbCl ₂	
4. Hg ₂ Cl ₂		4. F	Fe(OH) ₃	
5. NaH		5. <i>F</i>	Ag ₂ O	
6. MgCl ₂	1	6. H	HgO	
7. ZnBr ₂	1	7. (NH ₄)I	
8. MnCl ₂	1	8. (Cu ₂ O	
9. NH ₄ Cl		9. (Cs₃N	
10. PbS		0. (CuS	

(continued) WORKSHEET 3: Naming Compounds and Nomenclature

B. Binary Compounds - Nonmetal + Nonmetal

- 1. Compounds formed by two non-metals sharing electrons named by using the prefixes mono-, di-, tri-, tetra-, penta-, hexa-, hepta-, and octa-, non-, and deca- to indicate the number of atoms involved.
- 2. The least electronegative is named first.
 - a. if MORE THAN ONE ATOM, give it a prefix
 - b. If only one atom, it is not given a prefix.
 - c. element name is not changed
 - d. use above prefixes
- 3. The more electronegative is named second drop ending and add –ide. Second element always has prefix.

Examples:

 N_2O = Dinitrogen monoxide NO_2 = Nitrogen dioxide NO_3 = Dinitrogen tetraoxide N_2O_3 = Dinitrogen trioxide N_2O_5 = Dinitrogen pentoxide

Apply all rules as you name the following compounds

1. CO	12. SiO ₂
2. PBr ₃	13. Cl ₂ O ₇
3. CCl ₄	14. SO ₂
4. NCl ₃	15. N ₂ O ₃
5. SeO ₂	16. N ₃ P ₂
6. P ₂ O ₃	17. SCl ₂
7. SO ₃	18. SeF ₆
8. P ₂ O ₅	19. N ₂ O ₄
9. CO ₂	20. CS ₂
10. Pl ₅	21. H ₂ S
11. SeO ₃	22. CF ₄

(continued) WORKSHEET 3: Naming Compounds and Nomenclature

C. Tertiary Compounds:

- 1. Compounds containing polyatomic ions (more than 2 elements)
- 2. Polyatomic ion retains its name whether it is positive or negative.
- 3. Metals and nonmetals are names the same as before.

1. Pb(SO ₄)	14. Cs ₂ (Cr ₂ O ₇)
2. Cd(ClO ₄) ₂	
3. Li ₂ (CrO ₄)	
4. Ca ₃ (PO ₄) ₂	
5. NaNO ₂	
6. Ba(ClO ₃) ₂	
7. Ca(CN) ₂	
8. Cd(NO ₃) ₂	
9. AI(C ₂ H ₃ O ₂) ₃	
10. Fe ₂ (SO ₄) ₃	
11. (NH ₄) ₂ (SO ₃)	
12. Zn(BrO ₃) ₂	
13. CaCO ₃	

(continued) WORKSHEET 3: Naming Compounds and Nomenclature

D. Variations of Polyatomic Ions:

- 1. Polyatomic ions with oxygen included have multiple variations. The number of oxygen atoms included determines the naming scheme.
- 2. The charge of the ion is always the same as the main version no matter the number of oxygen atoms.
- 3. <u>Main versions</u> of ion always have: <u>base root of ion</u> and end with *-ate* examples: SO_4^{-2} (sulfate); NO_3^{-1} (nitrate)
- 4. One more oxygen than the main version always has: **per-** base root of ion -ate examples: SO₅⁻² (persulfate); NO₄⁻¹ (pernitrate)
- 5. One less oxygen than the main version always have: base root of ion and end with -ite examples: SO₃⁻² (sulfite); NO₂⁻¹ (nitrite)

6. Two less oxygens than the main version always has: *hypo-* base root of ion *-ite* examples: SO₂⁻² (hyposulfite); NO⁻¹ (hyponitrite)

Outside of chart always has How to determine what is a main version of a polyatomic ion: three (3) oxygen atoms for the main version. B₄O₇-2 $C_2O_4^{-2}$ FO₃⁻¹ NO_{3}^{-1} Notice the patterns of charges. SO₄-2 SiO_4^{-4} PO₄-3 CIO₃-1 AsO₄-3 SeO₄-2 BrO₃⁻¹ Inside of chart always <u>TeO</u>₄-2 10_{3}^{-1} has four (4) oxygen atoms for the main version. Notice charges. AtO_3^{-1}

Main Versions of Polyatomic Ions

1. PbSO ₂	12. CaCO ₂	_
2. Cd(ClO ₂) ₂		_
3. Ca ₃ (PO ₅) ₂	14. Zn(ClO ₄) ₂	
4. Na ₃ AsO ₃	15. Cd(C ₂ H ₃ O ₂) ₂	_
5. Ba(CIO) ₂	16. AuPO ₂	_
6. Cd(NO) ₂	17. Hg ₂ SeO ₅	_
7. Al(IO ₃) ₃	18. Pb ₂ SiO ₃	_
8. Fe(SO ₂) ₃	19. Ti(AtO ₃) ₃	_
9. (NH ₄) ₂ SO ₄		
10 Zn(BrO) ₂		
11. Sn(CO ₄)		