WORKSHEET 3: Naming Compounds and Nomenclature #### Rules to apply: #### A. Binary compounds - Metals + Nonmetals A binary compound is one containing only two elements. - 1. The element with the <u>lower electronegativity is named first</u>, followed by the element with higher electronegativity. Metal is named first, usually. - 2. The suffix of the second element is changed to -ide. CaO = Calcium oxide $CaCl_2 = Calcium$ chloride CaS = Calcium sulfide $CaH_2 = Calcium$ hydride - 3. The ammonium ion, NH_4^+ , the hydroxide ion, OH^- ; and the cyanide ion, CN^- retain their <u>-ide</u> suffix. $NH_4OH = Ammonium \ hydroxide$ $NaCN = Sodium \ cyanide$ - 4. Transition metal capable of more than one oxidation state use <u>roman numerals</u> in their name to indicate their oxidation state. Place in () . 5. Mercury I is a diatomic ion; therefore, it is found in the Hg₂⁺² form only. Mercury II is Hg⁺². Apply the above rules as you name the following compounds: | 1. Ca(OH) ₂ | 1 | 1. k | K(CN) | | |------------------------------------|---|-------------|---------------------|--| | 2. AICl ₃ | 1 | 2. N | MgO | | | 3. Fel ₂ | | 3. F | PbCl ₂ | | | 4. Hg ₂ Cl ₂ | | 4. F | Fe(OH) ₃ | | | 5. NaH | | 5. <i>F</i> | Ag ₂ O | | | 6. MgCl ₂ | 1 | 6. H | HgO | | | 7. ZnBr ₂ | 1 | 7. (| NH ₄)I | | | 8. MnCl ₂ | 1 | 8. (| Cu ₂ O | | | 9. NH ₄ Cl | | 9. (| Cs₃N | | | 10. PbS | | 0. (| CuS | | # (continued) WORKSHEET 3: Naming Compounds and Nomenclature ## B. Binary Compounds - Nonmetal + Nonmetal - 1. Compounds formed by two non-metals sharing electrons named by using the prefixes mono-, di-, tri-, tetra-, penta-, hexa-, hepta-, and octa-, non-, and deca- to indicate the number of atoms involved. - 2. The least electronegative is named first. - a. if MORE THAN ONE ATOM, give it a prefix - b. If only one atom, it is not given a prefix. - c. element name is not changed - d. use above prefixes - 3. The more electronegative is named second drop ending and add –ide. Second element always has prefix. ## Examples: N_2O = Dinitrogen monoxide NO_2 = Nitrogen dioxide NO_3 = Dinitrogen tetraoxide N_2O_3 = Dinitrogen trioxide N_2O_5 = Dinitrogen pentoxide # Apply all rules as you name the following compounds | 1. CO | 12. SiO ₂ | |----------------------------------|------------------------------------| | 2. PBr ₃ | 13. Cl ₂ O ₇ | | 3. CCl ₄ | 14. SO ₂ | | 4. NCl ₃ | 15. N ₂ O ₃ | | 5. SeO ₂ | 16. N ₃ P ₂ | | 6. P ₂ O ₃ | 17. SCl ₂ | | 7. SO ₃ | 18. SeF ₆ | | 8. P ₂ O ₅ | 19. N ₂ O ₄ | | 9. CO ₂ | 20. CS ₂ | | 10. Pl ₅ | 21. H ₂ S | | 11. SeO ₃ | 22. CF ₄ | # (continued) WORKSHEET 3: Naming Compounds and Nomenclature # C. Tertiary Compounds: - 1. Compounds containing polyatomic ions (more than 2 elements) - 2. Polyatomic ion retains its name whether it is positive or negative. - 3. Metals and nonmetals are names the same as before. | 1. Pb(SO ₄) | 14. Cs ₂ (Cr ₂ O ₇) | |---|---| | 2. Cd(ClO ₄) ₂ | | | 3. Li ₂ (CrO ₄) | | | 4. Ca ₃ (PO ₄) ₂ | | | 5. NaNO ₂ | | | 6. Ba(ClO ₃) ₂ | | | 7. Ca(CN) ₂ | | | 8. Cd(NO ₃) ₂ | | | 9. AI(C ₂ H ₃ O ₂) ₃ | | | 10. Fe ₂ (SO ₄) ₃ | | | 11. (NH ₄) ₂ (SO ₃) | | | 12. Zn(BrO ₃) ₂ | | | 13. CaCO ₃ | | # (continued) WORKSHEET 3: Naming Compounds and Nomenclature #### D. Variations of Polyatomic Ions: - 1. Polyatomic ions with oxygen included have multiple variations. The number of oxygen atoms included determines the naming scheme. - 2. The charge of the ion is always the same as the main version no matter the number of oxygen atoms. - 3. <u>Main versions</u> of ion always have: <u>base root of ion</u> and end with *-ate* examples: SO_4^{-2} (sulfate); NO_3^{-1} (nitrate) - 4. One more oxygen than the main version always has: **per-** base root of ion -ate examples: SO₅⁻² (persulfate); NO₄⁻¹ (pernitrate) - 5. One less oxygen than the main version always have: base root of ion and end with -ite examples: SO₃⁻² (sulfite); NO₂⁻¹ (nitrite) 6. Two less oxygens than the main version always has: *hypo-* base root of ion *-ite* examples: SO₂⁻² (hyposulfite); NO⁻¹ (hyponitrite) Outside of chart always has How to determine what is a main version of a polyatomic ion: three (3) oxygen atoms for the main version. B₄O₇-2 $C_2O_4^{-2}$ FO₃⁻¹ NO_{3}^{-1} Notice the patterns of charges. SO₄-2 SiO_4^{-4} PO₄-3 CIO₃-1 AsO₄-3 SeO₄-2 BrO₃⁻¹ Inside of chart always <u>TeO</u>₄-2 10_{3}^{-1} has four (4) oxygen atoms for the main version. Notice charges. AtO_3^{-1} ### **Main Versions of Polyatomic Ions** | 1. PbSO ₂ | 12. CaCO ₂ | _ | |--|--|---| | 2. Cd(ClO ₂) ₂ | | _ | | 3. Ca ₃ (PO ₅) ₂ | 14. Zn(ClO ₄) ₂ | | | 4. Na ₃ AsO ₃ | 15. Cd(C ₂ H ₃ O ₂) ₂ | _ | | 5. Ba(CIO) ₂ | 16. AuPO ₂ | _ | | 6. Cd(NO) ₂ | 17. Hg ₂ SeO ₅ | _ | | 7. Al(IO ₃) ₃ | 18. Pb ₂ SiO ₃ | _ | | 8. Fe(SO ₂) ₃ | 19. Ti(AtO ₃) ₃ | _ | | 9. (NH ₄) ₂ SO ₄ | | | | 10 Zn(BrO) ₂ | | | | 11. Sn(CO ₄) | | |