PH WORKSHEET

1. What is pH a measure of?
2. What is the equation used for finding pH ?
3. What is the equation that relates to pH and pOH ?
4. Complete the following table

$\left[\mathbf{H}_{3} \mathbf{O}^{+}\right]$	$\left[\mathbf{O H}^{-}\right]$	$\mathbf{p H}$	$\mathbf{p O H}$	Acidic/Basic?
$1.0 \times 10^{-9} \mathrm{M}$				
	$4.1 \times 10^{-2} \mathrm{M}$			
		3.75		
			5.45	

5. What would be the $\mathbf{p H}$ of each of the following:
a) 0.0010 M HCl
b) 0.0010 M HNO 3
c) 0.010 M NaOH
d) 0.0035 M HCl
e) 1.0 M HBr
f) 1.0 M KOH
g) 0.024 M HCl
h) 0.075 M KOH
i) 0.000034 M HCl
j) 0.000000000001 M HCl
6. A 2.63 g NaOH are dissolved in 156 mL of solution. Determine the NaOH concentration \& the pH .
7. List 3 strong acids and explain why these acids are considered strong acids.
8. List 3 weak acids and explain why these acids are considered weak acids.
9. What is the pH and pOH of a $1.2 \times 10^{-3} \mathrm{HBr}$ solution?
10. What is the pH and pOH of a $2.34 \times 10^{-5} \mathrm{NaOH}$ solution?
11. What is the pH and pOH of a solution made by adding water to 15 grams of hydroiodic acid until the volume of the solution is 2500 mL ?
12. What is the pH and pOH of a solution that was made by adding 400 mL of water to 350 mL of $5.0 \times 10^{-3} \mathrm{M} \mathrm{NaOH}$ solution?
13. What is the pH and pOH of a solution with a volume of 5.4 L that contains 15 grams of hydrochloric acid and 25 grams of nitric acid?
14. A swimming pool has a volume of one million liters. How many grams of HCl would need to be added to that swimming pool to bring the pH down from 7 to 4 ? (Assume the volume of the HCl is negligible)

ANSWERS

1. What is pH a measure of? The concentration of \mathbf{H}^{+}in solution
2. What is the equation used for finding $\mathbf{p H} ? \mathbf{p H}=-\log \left[\mathbf{H}^{+}\right]$
3. What is the equation that relates to $\mathbf{p H}$ and $\mathrm{pOH} \mathbf{p H}+\mathbf{p O H}=\mathbf{1 4}$
4. Complete the following table

$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$	$\left[\mathrm{OH}^{-}\right]$	pH	pOH	Acidic/Basic?
$1.0 \times 10^{-9} \mathrm{M}$	$\mathbf{1 \times 1 0 ^ { - 5 }}$	$\mathbf{9}$	$\mathbf{5}$	Basic
$\mathbf{2 . 4 \times 1 \mathbf { 1 0 } ^ { - 1 3 }} \mathbf{M}$	$4.1 \times 10^{-2} \mathrm{M}$	$\mathbf{1 2 . 6}$	$\mathbf{1 . 4}$	Basic
$\mathbf{1 . 7 8 \times 1 0 ^ { - 4 } \mathbf { M }}$	$\mathbf{5 . 6 2 \times 1 0 ^ { - 1 1 }} \mathbf{M}$	3.75	$\mathbf{1 0 . 2 5}$	Acidic
$\mathbf{2 . 8 2 \times 1 0 ^ { - 9 }} \mathbf{M}$	$\mathbf{3 . 5 5 \times 1 0 ^ { - 6 }} \mathbf{M}$	$\mathbf{8 . 5 5}$	5.45	Basic

5. What would be the $\mathbf{p H}$ of each of the following:
a) $0.0010 \mathrm{M} \mathrm{HCl} \quad 3$
g) 0.024 M HCl
1.6
b) 0.0010 M HNO 3
h) 0.075 M KOH
12.9
c) 0.010 M NaOH
12
i) 0.000034 M HCl
4.5
d) 0.0035 M HCl
2.46
j) 0.000000000001 M HCl
12
e) 1.0 M HBr
0
f) 1.0 M KOH
14
6. A 2.63 g NaOH are dissolved in 156 mL of solution. Determine the NaOH concentration \& the pH .
$2.63 \mathrm{~g} \mathrm{NaOH} \times \frac{1 \mathrm{~mol} \mathrm{NaOH}}{40.0 \mathrm{~g} \mathrm{NaOH}}=0.0658 \mathrm{~mol} \mathrm{NaOH} \quad 156 \mathrm{~mL} \times \underset{1000 \mathrm{ML}}{1 \mathrm{~L}}=$
$[\mathrm{NaOH}]=0.0658 \mathrm{~mol} \mathrm{NaOH} / 0.156 \mathrm{~L}=\mathbf{0 . 4 2} \mathbf{~ M}$

$$
\mathrm{pH}=-\log [0.42 \mathrm{M}]=\mathbf{0 . 3 7}
$$

7. List 3 strong acids and explain why these acids are considered strong acids.
$\mathrm{HClO}_{4}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{HNO}_{3}$ They are strong since they dissociate 100% in water giving the maximum amount of H^{+}ion from the compound
8. List 3 weak acids and explain why these acids are considered weak acids.
$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}, \mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{HNO}_{2}$ They are weak since they dissociate much less than $\mathbf{1 0 0 \%}$ in water so there is a large portion of the original acid present
9. What is the pH and pOH of a $1.2 \times 10^{-3} \mathrm{HBr}$ solution?
pH: $2.9 \quad$ pOH: 11.1
10. What is the pH and pOH of a $2.34 \times 10^{-5} \mathrm{NaOH}$ solution?
pOH: $4.6 \mathrm{pH}: 9.4$
11. What is the pH and pOH of a solution made by adding water to 15 grams of hydroiodic acid until the volume of the solution is 2500 mL ?
pH: 1.6 pOH: 12.4
12. What is the pH and pOH of a solution that was made by adding 400 mL of water to 350 mL of $5.0 \times 10^{-3} \mathrm{M} \mathrm{NaOH}$ solution?
pOH: $2.7 \mathrm{pH}: 11.3$
13. What is the pH and pOH of a solution with a volume of 5.4 L that contains 15 grams of hydrochloric acid and 25 grams of nitric acid?
pH: $0.82 \quad$ pOH: 13.18
14. A swimming pool has a volume of one million liters. How many grams of HCl would need to be added to that swimming pool to bring the pH down from 7 to 4 ? (Assume the volume of the HCl is negligible)

3545 grams (100. moles)

