Graphing Square Root and Cube Root Functions

- **Goals** Graph square root and cube root functions.
 - Use radical functions to find real-life quantities.

Your Notes

VOCABULARY

Radical function A function containing a radical such as

GRAPHS OF RADICAL FUNCTIONS

Follow these steps to graph $y = a\sqrt{x - h} + k$ or $y = a\sqrt[3]{x - h} + k.$

Step 1 Sketch the graph of $y = a\sqrt{x}$ or $y = a\sqrt[3]{x}$.

Step 2 Shift the graph h units horizontally and k units vertically.

Example 1

Graphing a Square Root Function

Graph
$$y = 2\sqrt{x + 1} + 1$$
.

Solution

1. Sketch the graph of $y = 2\sqrt{x}$. Notice that it begins at the origin and passes through (1, 2).

2. Note that for $y = 2\sqrt{x + 1} + 1$, h = -1 and k = 1. So, shift

the graph left 1 unit and up 1 unit. The result is a graph that passes through the points (-1, 1), (0, 3), and (3, 5).

Graph
$$y = -\sqrt[3]{x + 2} - 1$$
.

Solution

1. Sketch the graph of $y = -\sqrt[3]{x}$. Notice that it begins at the origin and passes through the points (-1, 1) and (1, -1).

2. Note that for $y = -\sqrt[3]{x+2} - 1$, h = -2 and k = -1. So, shift the graph <u>left 2 units</u> and down 1 unit. The result is a graph that passes through the points (-3, 0), (-2, -1), and (-1, -2).

Checkpoint Graph the function.

1.
$$y = \sqrt{x-2} + 2$$

2.
$$y = 2\sqrt[3]{x-1} - 2$$

Example 3 Finding Domain and Range

State the domain and range of the function in (a) Example 1 and (b) Example 2.

Solution

- **a.** From the graph of $y = 2\sqrt{x+1} + 1$ in Example 1, you can see that the domain is $x \ge -1$ and the range is $y \ge 1$.
- **b.** From the graph of $y = -\sqrt[3]{x+2} 1$ in Example 2, you can see that the domain and range are both <u>all real numbers</u>.

The equation of the radius r of a circle in terms of the area A

is
$$r = \sqrt{\frac{A}{\pi}}$$
. Use a graphing calculator to graph the model.

Then use the graph to estimate the area of a circle that has a radius of 2.76 units.

Solution

Graph
$$y = \sqrt{\frac{x}{\pi}}$$
 and $y = 2.76$.

Choose a viewing window that shows the point where the graphs intersect. Then use the *Intersect* feature to find the *x*-coordinate of that point. You get $x \approx 23.93$.

The area is about 23.93 square units.

Checkpoint Complete the following exercises.

3. State the domain and range of the function in (a) Checkpoint 1 and (b) Checkpoint 2.

- (a) domain: $x \ge 2$; range $y \ge 2$
- (b) domain and range: all real numbers
- **4.** Graph the equation $y = -1.3\sqrt{x}$ on a graphing calculator. Then use the graph to estimate the value of x when y is -2.3.

Homework

about 3.13