Staxting Ronl =
Desap eaxcins Wembparz

Contents
INtroduCHON. ... eerrerttereabante e e anreaas .|
Variables and COnSTAINES. ... ...iiieeere et errie e e ettt e ee et e ettt seanteraneanraaaraans 1
ASSUITIPHONS. ..ot e eee ettt bbb r s 1
1Y (o7 5 I 6 ) 1= SUT T O PP PP TS PP PROPRt |
Matters of Life and Death........cooooiiiiiiiiii 3
| IR D 5011221800 ) 1TSS 4
[ (o (=) I K 7 DU T OO PP 5
Food Glomious FOOd. ... oot 9
| 0310z e ) s K OO TR OO P O i5
(@) 1(e3 1 (o) c T PO 15
APPENAIX A L.oiiiiiii i s 16
AcknOWIEdEemENtS ... .c.eeiiiieieir ittt et 17
R EIEIICES . - eneiaenieeeie e eett s ee e eb et e et e s eemeem e eneearaneraaena bbb ansaaaatanrsnnnnns 17
tsh




Introduction

Modelling is often used to predict population growth, One model which considers birth and
death rates and another which also considers food supply can be used to predict the population
of wombats on a remote island ¢ years after the initial 200 wombats were setlled there.

Model One Model Two
d
aw _ (m-n)W -P—V-=(m—n—kW)W
dt dt

To compare these it is necessary to find an expression for both of them with W in terms of z,
thereby allowing us to predict the population and explore the effects of m, n and & on the
population growth.

=Variables and Constgts

m = positive constant related to birth rate

n = positive constant related to death rate

k = positive constant related to food supply
{ = time (in years)

W = number of wombats

Assumptions

»  All factors inffuencing birth, death and food supply (eg. disease, inferitlity) are taken into
account bym, n and k.

¢ No natural disasters occur throughout the course of the wombats’ lives.

« Since the models are continuous and the number of wombats is discrete, W values are
rounded down to the nearest whole wombat.

« There were no wombats on the island before the initial 200 were settled there.

* The island is free from human interference

Model One _

A general expression for population (W) in terms of f, will enable us to explore the effects of m

and n on our model. Antidilferentiating % = (m—n)W will give us this expression.

d

aw _ (m—n)W

dr

. a 1

AW (m-m)W

1

t= [— dW¥

f(m—n)W
1 1

= — dW

(m—n) ><fW

x log, W+c {c is a constant )

- (m—n)
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Transposing to make W the subject:

_ g, W

(m—n)

(t-c)(m-n)=log, W
W= e(r—c}(m-n)

t—c

_ e(m—n)t—(m—n)r:

_ e(m-n)r " e—(m—- n)c
W= Ae(m—n)r (where A= e‘(m_")c)

To evaluate A:
t=0,W=W; (where W; =initial population):

W= Ae(m—n)r
s.whent =0
Wi _ Aer(m—n)
= Aeo
=A
W; =A =200, so:
W = 200 ™)

We can check this general equation by substituting two values for m and n (0.1 and 0.06
respectively) from the beginning, performing the same calculations and comparing the results.!

The expression W = 200%™ can be used to find the poputation for different values of .
t= 10 years t =100 years
W = 200e>% W = 200e04
- 2000010 = 200004100
=200x1.452 = 200 x 54.598
= 298.365 = 10919.630
=308 = 10919
1 See Appendix A for checking.




The graph of W = 200%%% : 2
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It is seen that the rate of growth is rapid and although it would be reasonable to expect that the
population would be greater at t= 100 and ¢ = 10, an increase by a factor of approximately 36

seems unrealistic,

20

40

Matters of Life and Death
To further explore the effects of m (between 0.08 and 0.12) and n (between 0.06 and 0.09),

we look at the three possible situations: m < n, m = n or m > n and-choose values of m and n

which will create these situations:

60 B0

100

m n Equation
e 1(0.08-009)
m<n 0.08 0.09 W= 200e
= 2008“0.011‘
o (0.09-0.09)
m=n 0.09 0.09 W = 200e
— 200e% = 200
o 1{012-0.06)
m>n | 012 0.06 W= 200¢
= ZCX)ECLOGI
Plotting these:
W W
200 300
150 250
100 f 200
50} 150
£
50 100 150 200 250 300 350 20 40 60 80
0.0 )
W = 200e (m < n) W =200 {m=n)

Graphed with Mathematica: Student Version, Wolfram Research Inc, Champaign, 1993.
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W = 200¢%%% (m > n)

Ttis seen that when'm < n, the curve decays exponentially and the population eventually dies
out. This is true because (m — n) will be negative, resulting in an exponential function raised to
a negative power. Physically, this refers to the point where the birth rate is lower than the death
rate, resulting in a decreasing population and eventually extinction.

When m = n, the curve becomes a horizontal line (ie. no growth) because m — n = 0, resulting

in the function: W = 4e%" = A= W;. This will occur when the birth and death rates are equal.

When m > n however, the curve is typical of exponential growth because m — n > 0. In reality
this means that the growth rate is greater than the death rate, resulting in population explosion.

This can be summarised below:

m
m=n
0.12 - ‘
Population
0.1 explosion
zone (m > n)
0.08B
Population
G.06¢ extinction
zone {m < n)
0.04r¢
0.02
n

Limitations

This model] is unrealistic because it does not take the food supply, habitable area and other
elements necessary to sustain wombat life into account. In reality, unlimited growth (eg. when
m > n) will never occur, instead it would be expected that after a certain time the island would
not have the resources to support more life. A better model should incorporate a negative effect
on the rate of growth casued by over population.
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Model Two

A new model which is given by ‘;—P:, = (m - n - kW)W and also considers the limitations of
food supply (k) should prove much more accurate. It can be seen that as k increases, the value
of kW also increases, (m — n— kW) decreases and hence, the rate of wombat reproduction

decreases. The opposite is true when k — 0 (ie. gg — +00). This indicates an inverse

1
relationship between k and the amount of foed (ie. Amount of food « I). :

If we take m = 0.10, n = 0.06 (as for Model One) and k = 0.00005, then finding an expression
for W in terms of ¢ will help us compare the two models. To find this expression, however,

dw
— = (m -1 - kW)W must be solved.

Substituting m, n, and &:

d
;‘?’- = (0.10- 0.06 — 0.00005W)W

= (0.04 - 0.00005W)W

Inverting:
dt 1
dw  (0.04-0.00005W)W

Using partial {ractions:
dt 1

dW  (0.04— 0.00005W)W
T %

S + —
(0.04-0.00005W) W

(where T and V are constanls )

Matching up the co-efficients:
1 = TW+ V{0.04 - 0.00005W)

when W =0,
1 =T7(0)+ V(0.04 - 0.00005(0}))
=0.04V
f—t_v=ns
0.04
and when W =1,

1=T(1) +250.04 — 0.000051))
=T +25x0.03995
Hence T =1-25x0.03995
= 1-0.99875 = 0.00125




Substituting T and V:

d____ 000125 25
dW  (0.04-0.00005W) W
0.00125 20000 25

~ 10.04-0.00005W) " 20000 * W
25 25

Antidifferentiating:
25

dw + f — dW
w

2
Iafsoo—w

1
= 325
IW —800
=25log, W-25log (W -800)+ ¢

dW+25f% dw

Transposing to make W the subject:
log [ W ) _1l-c
“\w-800/ 25

W e

ix]

-

I
~ Be?5 {(where B=e¢ 25)

t
25

Be23 x (W -800)

<
I

r
—800Be?3
r

_800Be25

t
W - WBe2
( L
W|1-Be23
\ /

t

_800Be25
-




Simplifying:
t

_ -800Be?5
1

1~ Be2S
__—800
Be--O.(H-t -1

800

W

e (0=

when t = 0, W = 200. Therefore:
800
200= - Ge00D.

800
1-G
200 - 200G = 800
~200G = 600

G=-3
Substituting G:

__ 8%
1437 004"

tz0

Calculating W when ¢ = 10 and 100 (as for Model One) will enable further comparison:

t= 10 vears t= 100 years
800 800
W= 15,000 W = 1 3,00k

800 B0
143704 C143e7

800 800
T 1+2.012 T 1+0.0549
— 765,70 = 75833
~ 265 ~ 758

For the same values of 10 and 100 vears, the second model’s predictions are far more
conservative (11.1% and 93.1% more for 1 = 10 and 100 respectively). This would be due to

k’s influence.




Graphing this function against the Model One function with identical m and r values:
W

2000¢ W = 200"
Model One

1750}

1500}

1250}

1000} Model Two
750} 800
500} T j3e 0¥
250

t

0 20 40 60 80 100 120
1t is seen that the second model eventually reaches an asymptote (which would represent the

maximum number of wombats the island could support). It {follows that this ‘ceiling value’ is a
direct result of & (and is explored later).

Another way of investigating Model Two would be finding the point when the rate of growth is

2

: . dW . . . -
maximum, ie. when Ny is maximum. To do this we {ind when 0 =0.
t =

¥
aw _ (m—n - kW)W
dr
Therefore:

W _ d(dW)
da?  dt\ dt)
=(m-n-kW)W +W(-kW')

=(m-n-2%W)W

Since % 20, (m—n-2kW)=0. So:

m-—n=2kW
W= i —i
-2k
To find the corresponding ¢ value, substituie W = z -.n into our original equation:
m-n 800 B
2% 143700
004 80O
0.0001 1+3¢700¥
800
400 = ———-
1+ 39—0.04t

400 + 120020041 — g0
1200994 — 400




o004 _ 1
3
0.04t =1o L
- 108e 3
= log, 1~ log,3
= —log,3
t=25log,3
=~ 27.47

=~ 27 years and 5.6 months

Proving it’s a point of maximum:

when W =399 when W = 400 when W = 401

aw

aw _ (m—n—kW)W
dt

aw _ (m—n—-kW)W
dr

— (m-n—-kW)W

= (0.04 - 0.01995)399 = {0.04-0.02)400 = (0.04-0.02005)401
= 7.99995 =8 = 7.99995
MAXIMUM

Therefore at 27.47 years, W = 400 and the rate of reproduction is the greatest. This would be a
good time to move wombats back to the maintand (to keep W = 400) so that the rate of

m—An

reproduction will always be maximum. The rate can be calculated by substituting into the

formula %; = (m—n— kW)W as W, Therefore:

dW  m{m-n) n{m-n) k(m—n)?'
2% 2%k 452
(m-n)? (m-n)
Tk 4k
Am —n)* —(m —n)?
B ak
_ (m.—n)2
Y
Substituting m, n and k:
(dwy _(0.04
\ dt /g 0.0002
= 8 wombats / year

Therefore at the maximum rate, 8 wombats per year are born. This would be just before when
food suppply would begin to seriously hinder population growth.

Food Glorious Food

To explore ks effect on the asymptote (ie. the population that the island can sustain) it is easier
to solve a general equation for Mode! Two which gives W in terms of ¢, m, n, and &:
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aw
As —=(m-n-kW)W
s — (m-n )
dt _ 1

dW  (m-n-kW)W

= (—-—-—%m + % (where T and V are real constants )
m—nm-

Matching up the co-efficients:
1=TW+V(m-n-kW)
when W =0,
1=T(0)+V(m-n-k(0))
= V{m -n)
1

m-n

=V

and when W = 1,
1=T(1)+ (m—n—k(l))
m-n

m-n-£k

=T+
m-n

ek
=T+{1 m_n)

ro1-{1-_F )

Mm—n

k

m-—n

Substituting 7 and V:
k 1

dt ___m-n . m-n
dW (m-n-kW) W

k N |
(m-—nYm-n-kW) m-n

Antidilferentiating:

k 1
f= dW + f——— dW
f(m —n)\m—-n-kW) f(m -nW

k i 1
= dW — dW
{(m- n)-r(m -n—kW) * (m-n)} W

k
= mloge(til —n- k‘fV) +

o Wy
h (m—n)loge\m—n—kw e

log, W+¢c

1
(m—n)

N tsh




Transposing:

1 [ W
Ift= 1 then,
(m—n) pge\mnn-—kW)_*-c -

(t —c){m-n)=log, (L—)

\m-n-iw
Je-cXm-n) _ W
m—n—kW
fmen)  g~o(m-ny _ W
¢ xe m-n—-kW
Aettm—) _ S (where A = e—c{m_"))
m-n—-kW
Let X = Ae""™™ for simplification:
1%
X —
m—n-—kw
Xm-n-kw)=W
X(m—-n)- kWX =
X(m—n)=W(1+kX)
X(m~-n)
1+&X
m-n__w
Xtk
Substituting X:
W= m-n
(Aer(m-n) )"l ok
~ m-n _ gl
W= [e—tmn) g (L A )

whent =0, W = W;, therefore:
“,i _ - n

L’ +k
mn-n
T Lk
LW;+kW;=m-n
o p_mon- kW;
W;
Substituting L:
W e (m—n)W;

(m—n- ld"r{;)e‘(m'ﬂ)r + kW




We can test this general equation by substituting m = 0.1, n = 0.06, k = 0.00005 and W; = 200:
200(0.04)
(0.04 - 0.01)e™%% 4 0.01
~ 8
0.03e0%% L0.01
~ 8 100
= 0.03¢ 0% 0,01 100

.80
3,004 ]

This expression is identical to the one derived without the general formula, proving its
credibility.

We can now explore ks effect by keeping m and n constant and varying k: Similarly to Model
One there are three scenarios which could occur (and should be examined): & x W; < m - n,

kx W;=m-nand k xW; > m- n. Keeping m and n constant at 0.1 and 0.06 respectively

(and .. m—n = 0.04) and choosing k values which illustrate the above scenarios produces the
following equations:

m = 0.1, n = 0.06 and W; = 200

k Equation
8
(0.04 - 200k e~ 4+ 200k
_ 8
©(0.04 - 0.008)e -+ 4 0.008
200k <m-n 0.00004 - 8 -

~ 0.032¢9% L0 008

W= —°ov
3200 g

_ 1000
47004

8
(0.04 — 200k Je ™% + 200k
8
- —0.04r
200k =m —n 0.0002 (0.04 - 0.04)e | +0.04
8

0.04
W =200

W=




g8
W= —0.04r
(0.04 - 200k )e~0-0% 4 200k
8
200k >m—n 0.001 == 0.168"0'04’ 0.2
800
Wee———
20-16e~004
200
5_4e-U.Mt
When all three are plotted:
W
1000
1000 We———r
43'0'04t +1
800 }
600}
400}
200 W= 200
200
W=
s — : 004
0 25 50 75 100 125 15¢ 175 °© 5-de

It is seen that when 200k < m — n the poputation grows and approaches an asvmptote. This
would mean that the food supply hinders growth, but there are more wombats born to
compensate for those dying of hunger. Mathematically, the reason for growth is because

W; x k < m - n resulting is positive co-efficient of e. We can also deduce that the ceiling limit
of the population (ie. asymptote) is proportional to the food supply, ie. k. So if

Wi(m-—-n)

" ( Wik) —Hm-n) e w thenas ¢ — =, (m ~n- Wik‘)e—(m-n)r — 0, meaning:
m—-n—-Wkle +kxW;
W; x{(m—n)
Waas = —Sei—=
AN ‘VVI‘ % k
_m-n
k

It should be noted that the asymptote is not affected by the initial population (ie. W;) and that it
m-n
).

2k
It is obvious that when 200k = m —n the population rematns constant- there is no growth or
decay. This would represent the situation where the number of wombats killed (from hunger or

other reasons) equals the number being born. The mathematical reason is that W; xk =m —n,
resulting in a co-efficent of O for e, reducing the population expression to W = W;. We can

is double the population at which maximum growth occurs (

tsh




mathematically determine for what vaiues of & this will occur by finding when the ceiling limit
equals Wy

m-n
W, =
max k
W, - m-n
k
. m-n
W;
W; =200, s
m-n

ko growth = 200

When k> mn

we see that there is a decline in the curve until it steadily approcahes O

l .
population. This would represent the scenario in which there is not enough food to sustain even
200 wombats (ie. the number dying of hunger is greater than the number born). Mathematically,
the reason for the decay is that W; xk > m— n, giving e and negative co-efficient.

k’s effect on the asymptote (Wfinat) can be summarised by the following graph:

W(Final)

8000
6600
4000 H

2000

Y ik
0.0002 0.0004 0.0006 ¢.0008 0.001

This clearly shows that Wg,,y = 0 as k —= o and Wg, ;) = as k = 0.

m-—-n
In general, we can state that, as long as m - n > (), when £ <

there will be growth in the
i

. : M-

wombat population, when & =

then there will be no growth or decay, and when
i
m-n
k>

there will be a decay in the population. The maximum or minimum values of
i
m-n

population (for growth and decay) is given by Wy or min = P
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Limitations

While Model Two proved to be better, k has a negative impact from ¢ = () regardless of the
number of wombats. In reality this would not be true for there would be a period of
unrestricted growth after which food shortages became problematic. A better model would also
having discrete data/points.

Conclusion

[t was obvious that Model One, with its unrestricted exponential growth was an unrealistic
model. While Model Two was much better, setting a limit to the number of sustainable
wombats, it 1s still only a very rough guide. Further models which which consider as many
factors as possible (such as weather) would vastly improve the predictions’ accuracy.




Appendix A

If m=0.1and n = 0.06

aw _ (0.1-0.06)W
dt

= 0.04W

Inverting both sides of the equation:
dt 1 25

AW 004w T W
25
I=IW aw

=-_5xfiw dW
=25log, W+ec

Transposing to make W the subject:
log, W
t—¢=——
0.04
0.04(t - ) = log, W
W = o)

W = 00 o ,~0.04c

W= Aeo'mr (where the constant A= ¢~0-04¢ |

Evaluating A:
Whenr=0, W =200

- 700 = AePOHD 4

sol W =200e"%"

Il we substitute the same values for m and n into our general equation:
W = r;ooe(mmn)r
_ 200, 0-1-0.06)

= 200

It can be seen that the two expressions are identical.
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