DERIVATIVES OF EXPONENTIAL FUNCTIONS

If the power on an exponential function (with base e) is a linear expression, the following rules may be applied:

$$
\begin{gathered}
\text { If } y=e^{x} \text { then } \frac{d y}{d x}=e^{x} \\
\text { If } y=a e^{k x+c} \text { then } \frac{d y}{d x}=a k e^{k x+c}
\end{gathered}
$$

To differentiate more complex exponential functions (where the power is not in the form of a linear expression), we apply the Chain Rule.

Note: The power does not change when differentiating exponential expressions.

QUESTION 1

Differentiate the following equations with respect to x :
(a) $y=e^{4 x+1}$
(b) $y=-2 e^{1-5 x}$

Solution

(a) $y=e^{4 x+1}$

This equation is in the form of $y=a e^{k x+c}$, where $a=1$ and $k=4$.
By Rule: If $y=a e^{k x+c}$ then $\frac{d y}{d x}=a k e^{k x+c}$
$\therefore \frac{d y}{d x}=4 e^{4 x+1}$
(b) $y=-2 e^{1-5 x}$

This equation is in the form of $y=a e^{k x+c}$, where $a=-2$ and $k=-5$.
By Rule: If $y=a e^{k x+c}$ then $\frac{d y}{d x}=a k e^{k x+c}$
$\therefore \frac{d y}{d x}=-2 \times-5 e^{1-5 x}=10 e^{1-5 x}$

DIFFERENTIATING COMPLEX EXPONENTIAL FUNCTIONS

To differentiate more complex trigonometric functions (where the angle is not in the form of a linear expression), we apply the Chain Rule.

$$
\frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x} \quad \text { or } \quad f^{\prime}(x)=f^{\prime}(u) \times u^{\prime}
$$

QUESTION 2

Find the derivative of $y=-5 e^{\left(x^{2}-5 x\right)}$.

Solution

Identify the inner function u and write y in terms of u :
Let $y=-5 e^{u}$ where $u=x^{2}-5 x$
Find the derivative $\frac{d u}{d x}$:
$\frac{d u}{d x}=2 x-5$
Find the derivative $\frac{d y}{d u}$:
$\frac{d y}{d u}=-5 e^{u}$
Substitute the derivatives into the Chain Rule:
$\frac{d y}{d x}=-5 e^{u} \times(2 x-5)$
Replace u with its original expression and simplify:
$\frac{d y}{d x}=-5(2 x-5) e^{x^{2}-5 x}$

QUICK CHAIN RULE FOR
 EXPONENTIAL FUNCTIONS I

$$
\frac{d y}{d x}=\text { Derivative of the power } \times \text { Given term }
$$

Hint: Given the product/quotient of two exponential functions with the same base, write the expression as one term using index laws. Do not apply the Product or Quotient Rule.

Note: Do NOT lower the power on the exponential expression by 1.

QUESTION 3

Differentiate each of the following equations with respect to x.
(a) $y=-5 e^{\left(x^{2}-5 x\right)}$

Let $y=-5 e^{u}$ where $u=x^{2}-5 x$
$\frac{d y}{d x}=(2 x-5) \times-5 e^{\left(x^{2}-5 x\right)}=-5(2 x-5) e^{\left(x^{2-5 x}\right)}$
(b) $y=\frac{e^{\sin x}}{2}$

$$
\frac{d y}{d x}=\cos x \times \frac{e^{\sin x}}{2}=\frac{1}{2} \cos x e^{\sin x}
$$

(c) $y=e^{\cos x} \cdot e^{x}$
$y=e^{\cos (x)+x}$
$\frac{d y}{d x}=(-\sin x+1) e^{\cos (x)+x}$

QUICK CHAIN RULE FOR
 EXPONENTIAL FUNCTIONS II

Given $f(g(x))$:

Step 1: Differentiate the outside function.
Keep the inside function.
Step 2: Multiply by the derivative of the inside function.

QUESTION 3 - REVISITED

Differentiate each of the following equations with respect to x.
(a) $y=-5 e^{\left(x^{2}-5 x\right)}$

Step 1: Differentiate the outside function.
Keep the inside function.
Outside function: $y=-5 e^{()}$
Derivative: $\frac{d y}{d x}=-5 e^{()}$
Keep the inside function: $\frac{d y}{d x}=-5 e^{\left(x^{2}-5 x\right)}$
Step 2: Multiply by the derivative of the inside function.

$$
\frac{d y}{d x}=-5 e^{\left(x^{2}-5 x\right)} \times(2 x-5)=-5(2 x-5) e^{\left(x^{2}-5 x\right)}
$$

(b) $y=\frac{e^{\sin x}}{2}$

Step 1: Differentiate the outside function.
Keep the inside function.
Outside function: $y=\frac{1}{2} e^{()}$
Derivative: $\frac{d y}{d x}=\frac{1}{2} e^{()}$
Keep the inside function: $\frac{d y}{d x}=\frac{1}{2} e^{(\sin x)}$
Step 2: Multiply by the derivative of the inside function.

$$
\frac{d y}{d x}=\frac{1}{2} e^{(\sin x)} \times \cos x=\frac{\cos x e^{(\sin x)}}{2}
$$

(c) $y=e^{\cos x} \cdot e^{x}$
$y=e^{\cos (x)+x}$
Step 1: Differentiate the outside function.
Keep the inside function.
Outside function: $y=e^{()}$
Derivative: $\frac{d y}{d x}=e^{()}$
Keep the inside function: $\frac{d y}{d x}=e^{(\cos (x)+x)}$
Step 2: Multiply by the derivative of the inside function.

$$
\frac{d y}{d x}=e^{(\cos (x)+x)} \times(-\sin x+1)=(1-\sin x) e^{(\cos (x)+x)}
$$

