DERIVATIVES OF EXPONENTIAL FUNCTIONS

If the power on an exponential function (with base e) is a linear expression, the following rules may be applied:

If
$$y = e^x$$
 then $\frac{dy}{dx} = e^x$

If
$$y = ae^{kx+c}$$
 then $\frac{dy}{dx} = ake^{kx+c}$

To differentiate more complex exponential functions (where the power is not in the form of a linear expression), we apply the Chain Rule.

Note: The power does not change when differentiating exponential expressions.

QUESTION 1

Differentiate the following equations with respect to x:

- (a) $y = e^{4x+1}$
- (b) $y = -2e^{1-5x}$

Solution

(a) $y = e^{4x+1}$

This equation is in the form of $y = ae^{kx+c}$, where a = 1 and k = 4.

By Rule: If
$$y = ae^{kx+c}$$
 then $\frac{dy}{dx} = ake^{kx+c}$

$$\therefore \frac{dy}{dx} = 4e^{4x+1}$$

(b)
$$y = -2e^{1-5x}$$

This equation is in the form of $y = ae^{kx+c}$, where a = -2 and k = -5.

By Rule: If
$$y = ae^{kx+c}$$
 then $\frac{dy}{dx} = ake^{kx+c}$

$$\therefore \frac{dy}{dx} = -2 \times -5e^{1-5x} = 10e^{1-5x}$$

DIFFERENTIATING COMPLEX EXPONENTIAL FUNCTIONS

To differentiate more complex trigonometric functions (where the angle is not in the form of a linear expression), we apply the Chain Rule.

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$
 or $f'(x) = f'(u) \times u'$

QUESTION 2

Find the derivative of $y = -5e^{(x^2-5x)}$.

Solution

Identify the inner function u and write y in terms of u:

Let
$$y = -5e^u$$
 where $u = x^2 - 5x$

Find the derivative $\frac{du}{dx}$:

 $\frac{du}{dx} = 2x - 5$

Find the derivative $\frac{dy}{du}$:

$$\frac{dy}{du} = -5e^u$$

Substitute the derivatives into the Chain Rule:

$$\frac{dy}{dx} = -5e^u \times (2x-5)$$

Replace u with its original expression and simplify:

$$\frac{dy}{dx} = -5(2x-5)e^{x^2-5x}$$

QUICK CHAIN RULE FOR EXPONENTIAL FUNCTIONS I

 $\frac{dy}{dx}$ = Derivative of the power × Given term

Hint: Given the product/quotient of two exponential functions with the **same base**, write the expression as one term using index laws. Do not apply the Product or Quotient Rule.

Note: Do NOT lower the power on the exponential expression by 1.

QUESTION 3

Differentiate each of the following equations with respect to x.

(a) $y = -5e^{(x^2-5x)}$

Let $y = -5e^u$ where $u = x^2 - 5x$

$$\frac{dy}{dx} = (2x-5) \times -5e^{(x^2-5x)} = -5(2x-5)e^{(x^2-5x)}$$

(b) $y = \frac{e^{\sin x}}{2}$

$$\frac{dy}{dx} = \cos x \times \frac{e^{\sin x}}{2} = \frac{1}{2}\cos x e^{\sin x}$$

(c)
$$y = e^{\cos x} \cdot e^{x}$$

 $y = e^{\cos(x) + x}$

$$\frac{dy}{dx} = (-\sin x + 1)e^{\cos(x) + x}$$

QUICK CHAIN RULE FOR EXPONENTIAL FUNCTIONS II

Given f(g(x)):

- **Step 1:** Differentiate the outside function. Keep the inside function.
- **Step 2:** Multiply by the derivative of the inside function.

QUESTION 3 – REVISITED

Differentiate each of the following equations with respect to x.

- (a) $y = -5e^{(x^2-5x)}$
 - **Step 1:** Differentiate the outside function. Keep the inside function.

Outside function: $y = -5e^{(-)}$ Derivative: $\frac{dy}{dx} = -5e^{(-)}$

Keep the inside function: $\frac{dy}{dx} = -5e^{(x^2-5x)}$

Step 2: Multiply by the derivative of the inside function.

$$\frac{dy}{dx} = -5e^{(x^2 - 5x)} \times (2x - 5) = -5(2x - 5)e^{(x^2 - 5x)}$$

(b)
$$y = \frac{e^{\sin x}}{2}$$

Step 1: Differentiate the outside function. Keep the inside function.

Outside function:
$$y = \frac{1}{2}e^{(-)}$$

Derivative: $\frac{dy}{dx} = \frac{1}{2}e^{(-)}$
Keep the inside function: $\frac{dy}{dx} = \frac{1}{2}e^{(\sin x)}$

Step 2: Multiply by the derivative of the inside function.

$$\frac{dy}{dx} = \frac{1}{2}e^{(\sin x)} \times \cos x = \frac{\cos x e^{(\sin x)}}{2}$$

(c)
$$y = e^{\cos x} \cdot e^x$$

 $y = e^{\cos(x) + x}$

Step 1: Differentiate the outside function. Keep the inside function.

Outside function: $y = e^{(-)}$ Derivative: $\frac{dy}{dx} = e^{(-)}$ Keep the inside function: $\frac{dy}{dx} = e^{(\cos(x)+x)}$

Step 2: Multiply by the derivative of the inside function.

$$\frac{dy}{dx} = e^{(\cos(x)+x)} \times (-\sin x + 1) = (1 - \sin x)e^{(\cos(x)+x)}$$