PRIMARY STANDARDS

A standard solution is a solution whose concentration is accurately known. Standard solutions may be prepared from **primary standards**; chemical species that are so pure, that the amount (in mol) of substance can be accurately determined from its mass.

Properties of Ideal Primary Standards

- Be readily available in pure form.
- The molecular formula must be known and cannot vary. **For example:** The species cannot absorb substances from the air, or give off substances to the atmosphere.
- Be easily stored without deteriorating or reacting with the atmosphere.
- Must be soluble under the conditions in which it is to be used.
- Should have a high molecular weight so that weighing errors are minimised.
- Must react rapidly and completely with the analyte.
- Must react stoichiometrically with the analyte.
- Must be selective for the analyte.

The following substances are NOT suitable primary standards:

• Solid NaOH

In the case of solid NaOH, the molecular weight is not accurately known. NaOH is deliquescent (absorbs moisture from the air) and absorbs CO_2 from the atmosphere.

$$NaOH_{(s)} \overset{H_2O_{(l)}}{\rightarrow} NaOH_{(aq)} \quad \text{and} \quad CO_{2(g)} + 2NaOH_{(aq)} \rightarrow Na_2CO_{3(aq)} + H_2O_{(l)}$$

• HNO_3 and H_2SO_4

These acids absorb $H_2{\cal O}$ from the atmosphere and therefore, the molecular weights are not accurately known.

Hydrous sodium carbonate

The loosely bound water molecules can evaporate, hence the molecular weight is not accurately known.

PREPARING STANDARD SOLUTIONS

- **Step 1:** Calculate the mass of primary standard required to make a solution of a specific concentration.
- **Step 2:** Weigh out an accurately known mass of a primary standard.
- **Step 3:** Carefully transfer the weighed mass from the crucible into a volumetric flask. Gently rinse the crucible to ensure that the entire sample is transferred into the flask.
- **Step 4:** Add some distilled water to the volumetric flask and mix the solution carefully.
- **Step 5:** Make the solution up to an accurately known volume.
- **Step 6:** Calculate the concentration.

When a standard solution has been used to determine the concentration of a solution, we say that the solution has been standardised.