/amailit

TSFX MASTER CLASSES 2020
 UNIT 4 FURTHER MATHEMATICS

UNIT 3 \& 4 WRITTEN EXAMINATION 2

Reading Time: 15 minutes
Writing Time: 1 hour 30 minutes

QUESTION AND ANSWER BOOK

Student Name: \qquad
Structure of Book

Section A - Core	Number of questions	Number of questions to be answered	Number of marks
	9	9	36
Section B - Modules	Number of modules	Number of modules to be answered	Number of marks
	4	2	24
			Total 60

- Students are to write in blue or black pen.
- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers, one bound reference, one approved technology (calculator or software) and, if desired, one scientific calculator. Calculator memory DOES NOT need to be cleared. For approved computer-based CAS, full functionality may be used.
- Students are NOT permitted to bring into the examination room: blank sheets of paper and/or correction fluid/tape.

Materials Supplied

- Question and answer book of 31 pages.
- Formula sheet.
- Working space is provided throughout the book.

Instructions

- Write your student number in the space provided above on this page.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

THIS PAGE IS BLANK

SECTION A - Core

Instructions for Section A

Answer all questions in the spaces provided.
You need not give numerical answers as decimals unless instructed to do so. Alternative forms may include, for example, π, surds or fractions.

In 'Recursion and financial modelling', all answers should be rounded to the nearest cent unless otherwise instructed.

Unless otherwise indicated, the diagrams in this book are not drawn to scale.

Data Analysis

QUESTION 1 (4 marks)
The ages of the top 20 ranked male players in the Association of Tennis Professionals (ATP) is shown on the dot plot below:

a. What percentage of players in top 20 ranked players are aged 30 years or more?
\qquad
b. What is the median age of ATP male players ranked in the top 20 ?
\qquad
c. Roger Federer is ranked number six in the world and he is aged 37 years.

2 marks
Explain why he is not an outlier in the data set of age of top 20 ranked players.
Show an appropriate calculation to support your answer.
\qquad
\qquad
\qquad
\qquad

QUESTION 2 (3 marks)

A histogram is shown below of the $\log _{10}$ (career earnings in dollars) for the top 30 ranked male players in the ATP.

a. The modal class interval for this data is between two career earning values. State 2 marks these two career earnings values, each correct to one significant figure.
\qquad
\qquad
\qquad
\qquad
b. Stefanos Tsitsipas has career earnings of $\$ 3633$ 180. Place a cross (X) in the bar on 1 mark the histogram that would contain Stefanos Tsitsipas' earnings.

ANSWER ON GRAPH

QUESTION 3 (3 marks)

The average percentage of first serves in for the top 100 ranked male tennis players in the ATP is normally distributed with a mean of 61.2% of serves and a standard deviation of 3.6% of serves.
a. What percentage of the top 100 ranked male players would average more than 72%

1 mark of first serves in?
\qquad
\qquad
The average percentage of first serves in for the top 100 ranked female tennis players in the Women's Tennis Association (WTA) is also normally distributed with a mean of 61.1\% of serves and a standard deviation of 4.0% of serves.
b. Marin Cilic is a male tennis player with an average percentage of first serves in of 59.0%.

Naomi Osaka is a female tennis player who also has an average percentage of first serves in of 59.0\%.

Taking into account the statistics supplied, which player would be considered to be better at getting first serves in, in comparison to other players in their association?

Show calculations to support your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

QUESTION 4 (3 marks)

Winning a Grand Slam tournament in tennis is highly regarded. Only 149 male tennis players have won a Grand Slam tournament in the history of tennis, some of them many times.

The two way percentaged frequency table below shows the percentages, correct to the nearest whole percentage, of male players who have won at least one Grand Slam in the Open Era (post 1968) and before the Open Era (1968 and before).

The players are categorised by the total number of Grand Slam wins that they had.

	Before the Open Era	Open Era
5 or less Grand Slam wins	85%	75%
More than $\mathbf{5}$ to less than $\mathbf{1 0}$ Grand Slam wins	12%	15%
More than 10 Grand Slam wins	3%	10%
Total	100%	100%

a. Which of the variables Era played or Total Grand Slams won is the explanatory variable?
\qquad
\qquad
b. Does the information in the two way percentaged frequency table support the contention that the number of Grand Slam tournaments won is associated with the era in which the player plays?

Explain your answer with reference to appropriate percentages.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

QUESTION 5 (7 marks)

The graph below shows the Attendance (in thousands) at the Australian Open each year from 1997 to 2018.

a. Describe the trend in Attendance (in thousands) during the years shown in the graph 1 mark above.
\qquad
\qquad
The least squares regression equation, correct to three significant figures, for the relationship between Attendance (in thousands) and year is given by:

$$
\text { Attendance (in thousands) }=-15100+7.84 \times \text { year }
$$

The correlation coefficient for this relationship is $r=0.865$ correct to 3 decimal places.
b. Add the least squares regression line to the time series plot above.

ANSWER ON GRAPH

c. State the percentage of the variation in attendance in thousands that can be explained 1 mark by the variation in the year. Give your answer correct to the nearest whole percent.
\qquad
\qquad

The Attendance (in thousands) at the Wimbledon Open over the same years is given in the table below:

Year	Attendance (in thousands)
1997	382
1998	402
1999	410
2000	440
2001	432
2002	481
2003	469
2004	469
2005	415
2006	465
2007	433
2008	431
2009	472
2010	505
2011	494
2012	495
22013	493
2014	491
2015	453
2016	494
22017	473
22018	473

d. Determine the equation of the least squares regression line that would predict the

2 marks Attendance (in thousands) from the year.

Write the gradient and intercept values correct to three significant figures.

Attendance (in thousands) $=\square+\square \times$ year

Since 1997, the equations of the least squares lines for the Australian Open and Wimbledon Open have predicted that the attendance at the Australian Open will always exceed the attendance at the Wimbledon Open.
e. Explain why, quoting the values of appropriate statistics.
\qquad

QUESTION 6 (4 marks)

A sporting goods supplier notices that sales of tennis racquets are seasonal.
The seasonal indices for racquet sales for Summer and Winter are shown below:

Season	Summer	Autumn	Winter	Spring
Seasonal Index	1.62		0.43	

On average twice as many racquets are sold in Spring as are sold in Autumn.
a. Complete the two missing seasonal indices to the table above.

ANSWER IN TABLE

The seaonal index for racquet sales for this supplier in Winter is 0.43 .
b. What does this seasonal index indicate about the average racquet sales in Winter for 1 mark this supplier?
\qquad
\qquad
The deseasonalised racquet sales can be predicted using the least squares regression line

$$
\text { Deseasonalised sales }=103.12+6.34 \times \text { time period }
$$

where Summer $2018=$ time period 1 , Autumn $2018=$ time period 2, etc.
c. During Summer one year, the actual racquet sales first reaches 300 racquets.

Correct to the nearest whole time period, in which year does the least squares line predict that will happen for the first time?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Recursion and Financial Modelling

QUESTION 7 (5 marks)

Tom wants to buy a new computer.
Twelve months ago he invested $\$ 4000$ in an account that was paid 6.9% per annum interest compounding monthly.
a. What was the monthly rate of interest paid into Tom's account?
\qquad
\qquad
b. Write a recurrence relation, in terms of T_{n+1} and T_{n}, that gives the balance of Tom's 1 mark account n months after he started the investment.
\qquad
\qquad
Two months after Tom invested his money, his account balance was $\$ 4046$. 13 , correct to the nearest cent.
c. Using recurrence, write down the calculations that would show that Tom's account balance is $\$ 4046.13$ after two months.
\qquad
\qquad
\qquad
\qquad
d. How much money does Tom have to buy his computer now that he has had the account for 12 months?

QUESTION 8 (4 marks)

Tom has a printer that he uses in his work. He purchased the printer for $\$ 250$.
It will depreciate by $\$ 1.25$ for every 500 pages that are printed.
a. What is the book value of the printer after it has printed 15000 pages?
\qquad
\qquad
\qquad
b. Tom will write off the printer after a four year period when the book value is zero.

How many pages will Tom print on average per year?
\qquad
\qquad
\qquad
c. Tom could have depreciated his printer using reducing balance depreciation.

The rate of reducing balance depreciation would have resulted in the same book value after three years as the value from unit cost depreciation.

Determine the reducing balance depreciation rate that would achieve this result.
Give your answer correct to the nearest whole percent.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

QUESTION 9 (3 marks)

Tom's business has been going well and he has saved $\$ 45000$ in his superannuation account. His superannuation account is paying 7.5% per annum compounding monthly.

He is currently 30 years old and he wants to retire in 20 years time.
a. If Tom wants a total of $\$ 700000$ when he retires, how much would he need to contribute every month to achieve his aim?
\qquad
\qquad

Tom has a retirement plan with his $\$ 700000$ balance. His retirement account will pay 6.5% per annum compounding monthly.

He will take $\$ 4000$ per month for ten years, then $\$ 5000$ per month for the next ten years and then increase his payment to $\$ 6000$ per month until his balance reduces so that the account can no longer pay $\$ 6000$. He will then take a final smaller payment.
b. How long would Tom's retirement account last, in total, before the account balance is 2 marks reduced to zero?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

END OF SECTION A

SECTION B - Modules

Instructions for Section B

Select two modules and answer all questions within the selected modules.
You need not give numerical answers as decimals unless instructed to do so. Alternative forms may include, for example, π, surds or fractions.
Unless otherwise indicated, the diagrams in this book are not drawn to scale.
Contents Page
Module 1 - Matrices 14
Module 2 - Networks and Decision Mathematics 18
Module 3 - Geometry and Measurement. 22
Module 4 - Graphs and Relations 26

Module 1: Matrices

QUESTION 1 (3 marks)

A local tennis club runs competition on both Wednesdays (W) and Saturdays (S). The competition has games for both adults (A) and children (C).

The numbers of adults and children, who play on Wednesdays and Saturdays, is shown in the matrix, R, below:

$$
R=\left[\begin{array}{cc}
A & C \\
100 & 10 \\
120 & 150
\end{array}\right] \begin{gathered}
W \\
S
\end{gathered}
$$

a. How many adults play on Saturdays?

Adults pay $\$ 6.50$ per game and children pay $\$ 2.50$ per game. The total money collected from adults and children on each Wednesday and Saturday is displayed in a 2×2 matrix, M.
b. Write a matrix, G, such that $R \times G=M$.

The number of people playing at the club changes the next year. The new numbers of people playing is obtained from the following matrix product:

$$
E \times R=\left[\begin{array}{cc}
1.1 & 0 \\
0 & 0.8
\end{array}\right] \times R
$$

c. Describe the effect of pre-multiplying any 2×2 matrix by matrix E.
\qquad
\qquad
\qquad

QUESTION 2 (4 marks)

Amara (A), Bhavana (B), Chelsea (C), Danika (D), Etta (E) and Fatima (F) all play at the tennis club. One week they decide to have a round-robin tournament and they use the permutation matrix multiplication below to determine the playing schedule in round one:

$$
\left[\begin{array}{llllll}
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right] \times\left[\begin{array}{c}
A \\
B \\
C \\
D \\
E \\
F
\end{array}\right]
$$

This matrix product will determine who each person plays against. From the product matrix row 1 will play row 2 , row 3 will play row 4 and row 5 will play row 6 .
a. List who each player will play against in the first round according to this matrix.

The players complete a number of rounds of tennis so that each person has played each other person once. The winner of each game is shown in the adjacency matrix below. A win is represented by a " 1 " in the winner's row and the loser's column:

The placings of the tournament are determined using the sum of one-step and two-step dominances.
b. i. Amara wins the tournament and Chelsea comes second. Who came third?
\qquad
ii. Explain the meaning of the element in the first row and fifth column of the matrix that sums the one-step and two-step dominances.
\qquad
\qquad
\qquad
\qquad

QUESTION 3 (5 marks)

The adult tennis players, who play in the local competition between a number of clubs, play in a number of different divisions, A, B and C. Each week some players will not play, N.

The players transition between the three divisions and not playing according to the matrix T below:

$$
\begin{aligned}
& \text { this week } \\
& T=\left[\begin{array}{cccc}
A & B & C & N \\
0.8 & 0.1 & 0 & 0.2 \\
0.1 & 0.7 & 0.2 & 0.2 \\
0 & 0.1 & 0.7 & 0.4 \\
0.1 & 0.1 & 0.1 & 0.2
\end{array}\right] \begin{array}{ll}
A & \\
B & \text { next week } \\
& \\
&
\end{array}
\end{aligned}
$$

At one of the clubs, in one particular week, 50 people played in A division, 40 played in B division, 30 played in C division and 20 people did not play.
a. Write down the calculation that shows that, at this club, 33 people will play in C division the following week.
\qquad
\qquad
\qquad

Another much larger club has 100 people playing at each of levels A, B and C in the fifth week $\left(W_{5}\right)$ of competition. None of their players missed the fifth week.
b. Of the players at this club who played in Division C in the seventh week $\left(\mathrm{W}_{7}\right)$, what percentage played in Division B in the sixth week $\left(\mathrm{W}_{6}\right)$?

Give your answer correct to one decimal place.
\qquad
\qquad
\qquad
\qquad
\qquad
c. A total of 1000 people play tennis in the larger competition.

How many of these people, correct to the nearest whole person, will play in Division B in the long run?
\qquad
\qquad
\qquad

Another club have 100 people playing in each of divisions A, B and C. They also have 100 people who do not play each week (N).

In order keep numbers at the same level each week they have the following rules:

- Each week 50% of those in each division or not playing will stay in that division or not play the following week.
- The other 50% of people in each divison or not playing must move to one of the other divisions or not play the following week.
- The people who move do not need to all go to the same division or play the following week.
d. Complete the transition matrix below that would ensure that there are always 100 people in each division or not playing each week, given these rules.

Module 2: Networks and decision mathematics

QUESTION 1 (2 marks)

Luca is setting up a small dressage arena to practise his riding skills at his parent's property. A diagram of the arena along with the letters used to denote locations within and around the arena are shown below. The associated network of allowed routes is also shown:

After fencing the arena, Luca starts a basic training drill by riding into the arena at A and then passing through $\mathrm{D}, \mathrm{X}, \mathrm{G}, \mathrm{C}, \mathrm{M}, \mathrm{B}, \mathrm{E}$ and B .

Each of the letters in the arena could be considered a vertex in a network and the allowed routes within th dressage arena are edges.
a. Explain why the route ADXGCMBEB is not considered to be a path in network.
\qquad
\qquad
b. Explain why the network is considered to be a planar network.
\qquad
\qquad
\qquad

QUESTION 2 (5 marks)

Luca sets up a series of pipes from a large dam (L) and a small dam (D) at his parent's property to fill a water tank (T) for the horses. The pipes also need to go to and from the house (H), the machinery shed (M) and the shearing shed (S).

A diagram of the flow network for these pipes, including the capacity of each pipe, in L/min, is shown in the diagram below.

Two lines, Line A and Line B have also been added to the flow network.

a. Line B was added by a student who was attempting to draw a "cut" through the network. Explain why Line B is not a suitable cut to determine network flow.
\qquad
\qquad
b. State the capacity of the cut made by Line A, in $L / m i n$.
\qquad
\qquad
\qquad
c. State the maximum flow from the two sources L and D, to the sink T for this network, 1 mark in L/min.
\qquad
\qquad
\qquad
\qquad
d. Add the line that would represent the minimum cut to the diagram below.

There is insufficient flow to the water tanks (T) for the horses. Luca will replace the pipe from the machinery shed (M) to the shearing shed (S) with a new pipe of capacity $20 \mathrm{~L} / \mathrm{min}$.
e. What is the new maximum flow to the water tanks (T) if this pipe is replaced?
\qquad
\qquad
\qquad

QUESTION 3 (5 marks)

To set up Luca's dressage arena a number of tasks had to be completed. The tasks are shown in the activity network below, along with the duration in days of each activity:

a. State the activities that have three immediate predecessors.
\qquad
b. What is the minimum time in which Luca can complete his dressage arena project?
\qquad
c. Two activities have a latest start time of 7 days. State these two acitivities.
\qquad

In order to be ready for a local competition, Luca wants the dressage arena project to take no longer than 3 weeks (21 days).

He can pay an extra $\$ 200$ per day of reduction to reduce the duration of any activity, other than Activity A or Activity L. No activity can be reduced to less than two days' duration.
d. How much will it cost Luca to reduce the completion time of his project to 21 days?
\qquad
\qquad
\qquad
\qquad

Module 3: Geometry and Measurement

QUESTION 1 (2 marks)
Amber owns a horse that she uses in dressage competitions.
As part of Amber's horse's training she "lunges" the horse on a long rope. This means that she stands in the centre of an arena and the horse moves in a circle around her, with the length of the lunge rope forming the radius of the circle.

a. Amber starts with a 10 m long lunge rope and the horse walks around her.

What distance will the horse walk for each circle? Give your answer in metres correct to one decimal place.
\qquad
\qquad
\qquad
b. Amber has a circular lunging yard with an area of $1018 \mathrm{~m}^{2}$.

Given that the horse must stay at least one metre away from fence and Amber stands in the centre of the lunging yard, what is the longest length of lunge rope Amber can use? Give your answer in metres, correct to one decimal place.

QUESTION 2 (3 marks)
Amber rides her horse in dressage competitions. A diagram of a 60 m by 20 m dressage arena is shown:

One part of Amber's dressage test is a "half pass" forming a straight line from K to X , followed by a circle passing through both X and B.

a. Show that, if Amber performs these moves correctly, she will have travelled $57.4 \mathrm{~m}, 1$ mark correct to one decimal place.
\qquad
\qquad
\qquad
b. The dressage arena has a rectangular angled colorbond roof with support posts at $\mathrm{K}, 2$ marks E, H and F, B, M. The support posts at K, E and H are two metres longer than the support posts at F, B and M, so that the roof is two metres higher along that side.

Given that the 60 m by 20 m arena is completely covered, what is the total area of colorbond used in this roof? Give your answer in metres squared, correct to the nearest metre squared.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

QUESTION 3 (4 marks)

Amber lives in Adelaide ($35^{\circ} \mathrm{S}, 139^{\circ} \mathrm{E}$). She flies to Fuji, Japan, $\left(35^{\circ} \mathrm{N}, 139^{\circ} \mathrm{E}\right.$) to attend a dressage competition.
a. Assume that the radius of the Earth is 6400 km .

What is the distance between Adelaide and Fuji, in kilometres, correct to the nearest kilometre?
\qquad
\qquad
\qquad

Before she leaves for Japan, Amber rings her friend, Renato, who lives in Buenos Aires, Argentina $\left(35^{\circ} \mathrm{S}, 58^{\circ} \mathrm{W}\right)$. She makes the phone call at 7 pm on a Friday, Adelaide time.
b. Given that each 15° difference in longitude represents a time difference of one hour, what was the time in Buenos Aires when Amber rang Renato?

Give your answer correct to the nearest whole hour.
\qquad
\qquad
\qquad
c. Amber and Renato are sad that they live so far apart. What is the shortest distance from Adelaide to Buenos Aires, if Amber and Renato want to visit each other?

Give your answer correct to the nearest kilometre.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

QUESTION 4 (3 marks)

Amber feeds her horses using an automatic feeder that is shaped as a hexagonal based pyramid.

The feeder holds $12.25 \mathrm{~m}^{3}$ of food for the horses and stands 3 m high.
a. What is the area of ground, in m^{2}, that is covered by the feeder's base?
\qquad
\qquad
\qquad
b. The feeder was initially full, but after two days the horses had consumed enough food 2 marks that the height of food remaining in the feeder is now 2 metres.

What fraction of the food initially in the feeder remains?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Module 4: Graphs and Relations

QUESTION 1 (2 marks)

The graph below shows the price per ounce of gold, in Australian dollars, during the years 1980 through to 2000. Each line on the horizontal scale represents the $1^{\text {st }}$ of January of the listed year, so the graph starts at the $1^{\text {st }}$ of January, 1980, and finishes on the $1^{\text {st }}$ of January, 2000.

a. During how many calendar years did the price of gold drop by $\$ 60$ per ounce or more? 1 mark

Brigid is a prospector who found a small nugget of gold on the $1^{\text {st }}$ of January, 1981.
b. What was the average loss in dollars per ounce per year, if she sold her nugget on the 1 mark $1^{\text {st }}$ of January, 1997?

Give your answer correct to the nearest dollar per ounce per year.
\qquad
\qquad
\qquad
\qquad

QUESTION 2 (4 marks)

Brigid uses a metal detector to find gold. She has a favourite place to search for gold that is alongside a straight road.

One day Brigid parks her car and walks slowly from a car park along the road using her detector. She stops at a location where she gets a signal from the detector for a while, but then continues slowly along the road. Eventually the battery on her detector goes flat, so she turns and walks straight back to her car.

The distance-time graph below shows her progress, in metres per minute, where the distance in metres is the distance she is in a straight line from her car.

a. What was Brigid's average speed in metres per minute during the first 50 minutes of 1 mark her journey?
\qquad
\qquad

The equation of the line that gives the distance, in metres, that Brigid is from her car, after t minutes, is of the form distance $=a \times t+b$.
b. Give the values of a and b for the equation of the line segment between 65 minutes 1 mark and 85 minutes after she leaves her car.
\qquad
\qquad
\qquad
c. How far, in metres, is Brigid from her car 88 minutes after she starts her journey? 2 marks
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

QUESTION 3 (4 marks)

After using her metal detector, Brigid will need to recharge the battery. The metal detector has a display that indicates the percentage charge from 0% to 100%.

Brigid records that her metal detector charges according to the graph below:

a. Write the relationship between the percentage charge, C, and the number of minutes, 1 mark t, for the metal detector.
\qquad
\qquad
\qquad

Brigid's charger stops working and she buys a new charger. She determines that this charger charges the metal detector according to the equation below:

$$
C=\frac{1}{270} \times t^{3}
$$

b. How long will it take for the metal detector to reach 100% charge?
\qquad
\qquad
c. Add the graph showing the relationship between percentage charge (C) and t t^{3} for the new charger on the axes below. Include a suitable scale on the horizontal axis and label at least one point.

QUESTION 4 (2 marks)

Although Brigid loves prospecting, she does not always make enough money to pay all her bills, so she lectures and runs tutorials on metallurgy at a local university. Each tutorial and lecture runs for exactly one hour.

For this problem, x is the number of hours of tutorials and y is the number of hours of lectures that Brigid completes.

The following inequalities apply to Brigid's university work:

$$
y \geq 3 \quad x+y \leq 15 \quad y \leq 3 x \quad 10 x+50 y \leq 500
$$

The graph below shows the boundary lines that form the feasible region for this linear programming problem:

Brigid is paid $\$ 40$ per hour long tutorial and $\$ 250$ per hour long lecture.
What is the maximum income that Brigid can earn each week from tutorials and lectures?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

END OF QUESTION AND ANSWER BOOK

