UNIT 3 SPECIALIST MATHS INDEX

Coordinate Geometry

Sketching Power Functions Defined by $f(x) = ax^m + bx^{-n}$

Method 1: Addition of Ordinates

Method 2: Considering Essential Features

Sketching Rational Algebraic Functions Defined by $f(x) = \frac{P(x)}{O(x)}$

Key Features on Sketch Graphs – Summary Method 3: Sketching Reciprocal Functions The Ellipse The Hyperbola

The Conjugate Hyperbola

The Modulus Function

Vectors

Vector Notations

Position Vectors

Equality of Vectors

Addition of Vectors

The Identity Vector

The Inverse Vector

Subtraction of Vectors

Multiplication of a Vector by a Scalar

Unit Vectors

Vectors in 3 Dimensional Space

Position Vectors

The Magnitude of a Vector

Creating Unit Vectors

The Scalar Product of Two Vectors

Properties of the Scalar Product

Scalar Product in Component Form

Angles Between Vectors

Resolution of Vectors

Scalar Resolutes Vector Resolutes

Linear Dependence and Independence Vector Proofs Circle Geometry Geometric Proofs Using Vectors

Circular (Trigonometric) Functions

Exact Values
Graphs of Trigonometric Functions
The Fundamental Identities
The Addition Theorems

The Double Angle Formulae Inverse Circular Functions Maximal Domains and Ranges Transformations of Functions – Summary

Complex Numbers

The Imaginary Number Operations Involving Imaginary Numbers

Properties of Complex Numbers

Equality
Addition and Subtraction
Multiplication
Complex Conjugates
Magnitude
The Multiplicative Inverse
Division of Complex Numbers

The Complex Number Plane

Geometrical Interpretation of Subtraction
Polar Form
Converting Cartesian Forms into Polar Form
Converting the Polar Form into Cartesian Form
Multiplication and Division in Polar Form
Geometrical Interpretation of Multiplication and Division

De Moivre's Theorem

Solving Equations in the Form $z^n=a$ Using De Moivre's Theorem Finding nth Roots of a Complex Number The nth Roots of Unity Finding Square Roots in Exact Cartesian Form

Polynomials Over C

The Fundamental Theorem of Algebra
The Factor Theorem
The Conjugate Root Theorem
Factors Over C of Polynomials

Factorising Quadratics Over C
Factorising Cubics Over C
Factorising Polynomials of Degree Greater Than 3 Over C

Solution Over C of Polynomial Equations

Relations and Regions in the Complex Plane

Relations in the Complex Plane

Restrictions on Magnitude Solving Questions Involving Restrictions on Magnitude Rays and Lines Common Types of Relations – Summary

Regions in the Complex Plane

Common Types of Regions – Summary

Differential Calculus

Formula

The Derivative of tan(kx) and cot(kx)
The Second Derivative
Applications of the Second Derivative
Implicit Differentiation

Derivatives of Inverse Circular Functions

Integral Calculus (Part 1) – Techniques in Anti-Differentiation

Definition

Basic Properties

Standard Anti-Derivatives

Linear Substitution

The 'Reverse Chain Rule'

Anti-Derivatives of $\frac{1}{\sqrt{a^2-x^2}}$ and $\frac{1}{a^2+x^2}$

Anti-Derivatives of $\sin^2(kx)$ and $\cos^2(kx)$

Anti-Derivatives of odd powers of sin(kx) and cos(kx)

Anti-Derivatives of $tan^{n}(kx)$ and $cot^{m}(kx)$

Anti-Derivatives of Expressions of the Form $\sin^m(kx)\cos^n(kx)$

Partial Fraction Decomposition

Rational Functions

N(x) = Polynomial of Degree 2 or Higher

Anti-Derivatives of Rational Functions with Quadratic Denominators

Anti-Differentiation by Recognition

The Relationship between the Graph of a Function and the Graph of its Anti-Derivative

Integral Calculus (Part 2) - Integration and its Applications

Definite Integrals
Basic Properties
The Area Under a Curve
The Area Between a Cur

The Area Between a Curve and the Y Axis

The Area Between Two Curves

Volumes of Solids of Revolution

Lengths of Curves in the Plane

The Length of a Parametric Curve