SEQUENCES AND SERIES

A "sequence" is a set of numbers or terms. A "series" is the sum of these numbers or terms.

 $\{15, 20, 25, ...\}$ is a sequence.

 $15 + 20 + 25 + \dots$ is a series.

Every term of a sequence has a corresponding 'n' value, which gives the term's position in the sequence. Hence n is a counting number of 1, 2, 3, ... (never zero, negative or fractional).

For example: $\{5, 14, 23, 32, ...\}$ $\nearrow \uparrow \uparrow \bigtriangledown$ n = 1 n = 2 n = 3 n = 4

The "General Term, T_n " (sometimes written as U_n) is also called the "*n* th term"

It is a formula which will predict any term in the sequence by simply replacing the n in the formula with the corresponding n value.

The "Sum of Terms, S_n " is a formula which will predict the sum of terms up to and including the *n* th term.

WATCH OUT!

The use of T_n and S_n formulas is very similar to function notation.

QUESTION 1

- (a) Given $T_n = 9n 4$, find $T_1, T_2, T_3, T_k, T_{k+1}$ $T_1 = 9(1) - 4 = 5$ $T_2 = 9(2) - 4 = 14$ $T_3 = 9(3) - 4 = 23$ $T_k = _ _ = _ = _$ $T_{k+1} = _ = _ = _ = _ = _$
- (b) Which term equals 149?

Let $T_n = 149$ $\therefore 9n - 4 = 149$ 9n = 153 n = 17 i.e. The 17th term is 149. (c) Is 200 a term of this sequence?

Let
$$T_n = 200$$

 $\therefore 9n - 4 = 200$
 $9n = 204$
 $\therefore n = 22.7$

Hence 200 is not a term of this sequence since n cannot be a fraction.

REMEMBER

n must be a counting number.

(d) Find the first term to exceed 1000.

Let $T_n > 1000$ $\therefore 9n - 4 > 1000$ $9n > ___$

∴ n >____

The first positive integral value satisfying this is n =_____. Hence:

$$T_n = 9n - 4$$

$$\therefore _ = 9(_) - 4$$

= ____

The first term to exceed 1000 is _____.

(e) Find S_3 .

Here we are not given a formula for S_n , but we do know $T_1 = ___ T_2 = ___ T_3 = ___$

Hence
$$S_3 = T_1 + T_2 + T_3$$

(f) Show that the formula $S_n = \frac{9n^2}{2} + \frac{n}{2}$ also gives the correct sum for S_3 .

$$S_3 = \frac{9()^2}{2} + \frac{()}{2}$$

= _____

Which agrees with the answer in part (e) above.

QUESTION 2

(a) Find the first term and fifth term of the sequence with the general n^{th} term $U_n = 2.3^{n-3}$.

$$U_1 = 2.3^{(1)-3} = 2.3^{-2} = \frac{2}{9}$$

 $U_5 = 2.3^{(-)-3} = 2.$ =

(b) Is 13122 a term of this sequence? Is 1482?

Let $U_n = 13122$	$3^6 = 729$
i.e. $2.3^{n-3} = 13122$	$3^7 = 2187$
$3^{n-3} = $	$3^8 = 6561$
$\therefore 3^{n-3} = 3$ By using the constant multiplying function on the calculator.	
<i>n</i> -3 =	
<i>n</i> =	
So yes, 13122 is a term of this sequence (theth term).	

Let $U_n = 1482$ i.e. $2 \cdot 3^{n-3} = 1482$ $3^{n-3} = _$ _____

But $3^6 = 729$ and $3^7 = 2187$.

 \therefore No positive integral value of *n* is possible.

 \therefore 1482 is not a term of this sequence.

QUESTION 3 Evaluate $\sum_{r=1}^{3} (2r^2 - 7r + 5)$.

Solution

Here the general term is $T_r = 2r^2 - 7r + 5$

(r is being used instead of n ... it makes no difference).

$$T_{1} = 2(1)^{2} - 7(1) + 5 = 0$$

$$T_{2} = 2(2)^{2} - 7(2) + 5 = -1$$

$$T_{3} = 2(3)^{2} - 7(3) + 5 = 2$$

$$\therefore \sum_{r=1}^{3} T_{r} = 0 + \underline{\qquad} + \underline{\qquad}$$

$$= \underline{\qquad}$$

MORE ON THE SUM OF TERMS, \boldsymbol{S}_n

$$S_{1} = T_{1}$$

$$S_{2} = T_{1} + T_{2} = S_{1} + T_{2}$$

$$S_{3} = T_{1} + T_{2} + T_{3} = S_{2} + T_{3}$$

$$S_{n} = \underbrace{T_{1} + T_{2} + \dots + T_{n-1} + T_{n}}_{S_{n-1}}$$

$$S_{n} = S_{n-1} + T_{n} \quad (n \ge 1)$$

$$S_{n} - S_{n-1} = T_{n}$$

$$T_{n} = S_{n-1} - S_{n-1} = T_{n}$$

$$T_n = S_n - S_{n-1}, \ n > 1$$

 $T_1 = S_1, \ n = 1$