



# UNIT 3 CHEMISTRY SUMMARY NOTES FOR THE VCAA EXAMS

# WRITTEN BY A STUDENT WHO OBTAINED A NEAR PERFECT STUDY SCORE

# **FUELS**

**Fuel:** A substance that can release chemical energy through a chemical or nuclear reaction

UNIT CONVERSIONS

| 1kj (kilojoule)  | 10^3J  |
|------------------|--------|
| 1MJ (megajoule)  | 10^6J  |
| 1GJ (gigajoule)  | 10^9J  |
| 1TJ (tetrajoule) | 10^12J |

Renewable fuels: Can be produced at a faster rate than they are consumed e.g biogas

Cloud point of a fuel: When the fuel begins to crystallise and is less able to flow

# **Fossil Fuels**

#### Coal:

- source: wood (50% C)—> peat (60% C)—> brown coal (70%C)—> black coal (90% C) \*black coal is the most efficient source as it has the lowest water content—energy is used to evaporate the water
- organic dead matter (sedimentary rock) which is condensed through high heat/pressure over a long period of time (*therefore non-renewable*)
- structure: large molecules of C,H,N,S
- · extracted via surfacing/deep mining

# **Crude Oil (petroleum):**

- a mixture of hydrocarbons (mostly alkanes)
- the useful fuels within crude oil are extracted via fractional distillation (separates substances via their boiling point)
- · used for transport and heating
- non-renewable—extracted from oil reserves which are not replenished
- extracted via fracking (allows gas to flow to surface)
- *petrodiesel*: produced via fractional distillation of crude oil— less viscous than biodiesel, mainly alkanes

# Natural Gas (Coal Seam Gas):

- a fossil fuel found deep in the earth's crust, made up mainly of methane with small amounts of ethane and propane
- found in:
  - > coal deposits where it is bonded to the surface of coal (the is coal seam gas)
  - > component of petroleum
  - > trapped between layers of rock
- extracted via fracking
  - 1. a well is drilled deep in the deposit
  - 2. well is encased in concrete to prevent leakage into water supplies
  - 3. fracking fluid is pumped into wells at high pressure—fractures surrounding coal to allow gas to flow through)
- *liquid petroleum gas:* propane/butane separated from natural gas via fraction distillation, becomes a liquid under high pressure (used in cars)

# **Bio Fuels**

- renewable energy sources derived from plant materials
- often carbon neutral as CO2 emissions are used up by plant matter during photosynthesis

#### **Bioethanol:**

C<sub>6</sub>H<sub>12</sub>O<sub>6</sub> --> 2 CH<sub>3</sub>CH<sub>2</sub>OH + 2 CO<sub>2</sub> glucose ethanol carbon dioxide

- replaces crude oil
- created by employing enzymes from yeast to convert starch/sugar to ethanol via fermentation

#### **Biogas:**

- a gas released in the breakdown of organic waste by anaerobic bacteria (converts molecules such as carbohydrates/proteins in methane + CO2)
- can be used for heating
- manure/farm waste is inserted into a digester containing anaerobic bacteria
- especially useful on farms as the farm waste can be used as the fuel, minimising transport needed

#### **Biodiesel:**

 mixture of esters produced by reacting organic matter (vegetable oil or animal fat) and an alcohol (usually methanol)—process called trans-esterification

- due to polarity of the ester, it attracts water which can inhibit efficient combustion
- can attract water which reduces efficiency of engines
- more vicious than petrodiesel
- high cloud point—more likely to need antifreeze additives than petrodiesel
- is it is made from animal and vegetable fat, ist production may be prioritise food production leading to food shortages

# **Energy Production**

# **Production of electrical energy from coal:**

chemical energy (stored in coal)—> thermal energy (combustion of coal)—> thermal energy used to boil water to create steam—> mechanical energy (steam used to power turbine)—> electrical energy from generator

Efficiency: 35%...heat lost to:

- > chimney gas
- ➤ heat in steam

#### **Fossil Fuels vs Biofuels:**

|                      | Fossil Fuels                                                                                                                | Biofuels                                                                                                                                                                |  |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Energy content       | higher                                                                                                                      | lower                                                                                                                                                                   |  |
| Renewability         | nonrenewable                                                                                                                | renewable                                                                                                                                                               |  |
| Environmental impact | <ul> <li>air pollution</li> <li>large amounts of greenhouse<br/>gas</li> <li>land degradation due to<br/>digging</li> </ul> | <ul> <li>smaller carbon footprint (due to the use of photosynthetic organisms)</li> <li>land clearing for biofuels</li> <li>high water usage for crop growth</li> </ul> |  |

<sup>\*</sup>can also use natural gas which is more efficient (40%) or biogas (less efficient)

# **Chemical Reactions**

**Chemical energy:** stored in the bonds between atoms, results from:

- > attraction between electrons and protons
- > repulsion's between nuclei
- > repulsions between electrons
- movement of electrons
- > vibrations/rotations around bonds

#### Enthalpy change $\Delta H$ : energy of reactants—energy of products

- if ΔH <0, reaction is exothermic
- if ΔH >0, reaction is endothermic
- factors affecting ΔH: amount of reactants, temperature, pressure, physical state of reactants/products
- a reaction has a +ve  $\Delta H$  if the strength of bonds in reactants are greater than that of the products
- the difference in energy between reactants/products must be absorbed or released to keep reactants/products at the same temperature

## DONT FORGET TO ALWAYS INCLUDE +/- SIGNS!

\* If H2O is a liquid in combustion the reaction will have a higher  $\Delta H$  (requires more energy to be a gas)\*

#### **Energy transfers:**

- when bonds are broken, energy is taken from surroundings (this is the activation energy)
- · when bonds are formed, energy is released





When a catalyst is added, 2, 3, and 6 are lowered.

- 1. PE of reactants
- 2. PE of products
- 3. PE of activated complex
- 4. activation energy
- 5. Heat of Reaction,  $\Delta H$
- **6.** activation energy of reverse reaction

#### **ENDOTHERMIC REACTION**



# **Specific Heat Capacity**

- amount of energy required to raise the temperature of 1g of a substance by 1 degrees
- water is 4.18J/G/C due to strong H bonds

# **Experimental Determination of ΔH:**

0.355g of methanol undergoes combustion and the heat is used to heat 100ml of water,  $\Delta T$  was 17.41.

- > determine mass of water—0.997x100 = 99.7g
- ➤ energy used to heat water = 4.18x99.7x17.41 = 7238.19J =7.238kJ
- > number of mols of methanol = 0.011
- → divide energy by mols = -656Kj/mol

#### Reasons why heat transfer is not 100% efficient:

- heat lost in air (convection)
- evaporation from uncovered beaker
- beaker not insulated

#### Gases

- ➤ low density
- ➤ compress easily
- mix together rapidly

## **Kinetic Molecular Theory:**

- the volume of gas molecules in negligible compared to the volume of space in which they move
- gas molecules move in a straight line between frequency collisions
- all collisions are elastic—no energy lost
- there are negligible forces acting between molecules
- \* these are ideal gases, the exceptions are at *very high pressure* (forces increase in strength and volume decreases) and *low temperature* (move slowly allowing forces between molecules to operate)

#### **Volume Conversions**

- 1mL = 1cm3
- 1000L = 1m3

#### Pressure:

• a measure of the force applied by gas particles as they collide with walls of the container

**Boyles Laws:** 

$$P \propto rac{1}{V} \qquad \quad P_1 V_1 = P_2 V_2.$$

 pressure will increase as temperature increases (with fixed volume) as particles move faster

#### **Molar Volume:**

- all gases occupy 24.8L for every mol (at 25 degrees and 100kPa)
- n= V/24.8

e.g 0.24 mols of N2 occupies 6L (0.24x24.8)

#### **Charles Law:**

- · describes how gases tend to expand when heated
- V = kT

## **Universal Gas Equation:**

PV = nRT (kPa, L, mols, 8.31, Kelvin (+273))

#### **Maxwell-Boltzmann Curve:**

- at any temperature particles exist with very little energy or very high energy
- only the average kinetic energy changes as temperature increases
- curve shows the proportion of molecules with Ea (area under the graph is always constant)





# **Redox Reactions**

- reactions involving an electron transfer e.g respiration, photosynthesis, combustion
- OILRIG= oxidation is loss, reduction is gain
- oxidants: itself reduced, higher up on electrochemical series
- $Fe^{2+} \rightarrow Fe^{3+} + e^{-} \qquad \text{(oxidation half reaction)}$   $\frac{Ce^{4+} + e^{-} \rightarrow Ce^{3+}}{Fe^{2+} + Ce^{4+} \rightarrow Fe^{3+} + Ce^{3+}}$
- reductants: itself oxidised, lower on electrochemical series
- in this reaction Fe2+/F3+ and Ce4+/Ce3+ are conjugate pairs

#### **Oxidation Number Rules:**

- free elements: 0 e.g O2
- ionic compounds: same as their valency e.g SO4^2- O=-2 S=+6
- exceptions:
  - O is -1 in peroxides such as H2O2 and BaO2
  - H is -1 in metal hydrides such as NaH and CaH2
  - the most electronegative element in a compound has a negative oxidation number e.g F2O F=-1 O=+2

Increase in oxidation number indicates an element has been oxidised

# **Writing Half Equations:**

- key elements—> oxygen (H2O)—> Hydrogen (H+)—> electrons—>states
- e.g 2NO3- --> N2O
  - > 2NO3- -> N2O+ 5H2O
  - > 10 H+ 2NO3- -> N2O+ 5H2O
  - > 10 H(aq)+ 2NO3-(aq)+ 8e- -> N2O(g)+ 5H2O(l)

## **GALVANIC CELLS**



- convert chemical energy into electrical energy (exothermic)
- require a negative gradient on the electrochemical series
- batteries are units of galvanic cells linked together
- requires a salt bridge that won't take part in the reactions but provides ions to balance out changes that accumulate e.g KNO3
  - > cations move to cathode (+)
  - ➤ anions move to anode (-)
- Cathode: positive, reduction, mass accumulates
- Anode: negative, oxidation, mass lost

#### **Gas electrodes:**

• uses inert electrodes (Pt or Cu)



## Saltbridge:

- completes circuit by allowing ionic conduction to maintain electrical neutrality in each half cell
- must be ionic, soluble in water, inert
- usually KNO3 or KOH

#### **Electrochemical series:**

- Potential difference: under standard conditions (100kPa, 1M concentration, 25 degrees)
  - compared to standard hydrogen half cell
  - indicates the volts of current which will be produced
  - E= E(oxidant)-E(reductant)
- some reactions may not occur as they are too slow

## **Primary Cells:**

- disposable, cannot be recharged e.g torch/remote
- cannot be recharged because the products slowly migrate from electrodes or are consumed by side reactions
- design promotes the removal of products from electrodes
- they cause harmful chemical to be put in environment after disposal
- e.g dry cell, button cell

## design features:

- > reductant is a metal
- ➤ electrolytes concentrated in paste/gel
- > a porous 'separator' used rather than a salt bridge to allow ion exchange
- > products are removed from electrodes (usually soluble)

# **Secondary Cells:**

- rechargeable as solid products adhere to electrodes
- recharging:
  - reactions are reversed by connecting to a power source slightly higher (due to energy lost in transformation such as heating wire) then the potential difference (becomes a electrolytic cell) to convert chemical to electrical energy
  - anode becomes positive (attaches to positive end of power source)
  - cathode becomes negative (attaches to negative end of power source)

## **Battery Life:**

- desire the performance of a battery measures in the number of charge-discharge cycles before a battery becomes unusable
- factors leading to battery decrease:
  - loss of active materials to side reactions
  - formations of other chemicals that impede functioning of the cell
  - impurities of electrodes that can react with active materials
- temperature: causes faster rate of deterioration due to faster side reactions however low temperatures deliver less electric charge

#### **Fuel Cells**



- a type of galvanic cell that doesn't need recharging as there is a continuous supply of reactants
- · must be discarded once equilibrium is achieved
- provide energy for forklifts, power plants, cars
- generally 40-60% efficient (this can be increased to 80% if the steam they produce is used to power turbines)
- have a higher efficiency than thermal power stations as chemical energy is directly transformed to electrical energy
- hydrogen economy: proposed system of using only hydrogen for fuel— good for the environment as very low emissions (only emits water, heat and very small amounts of NO2)—could replace internal combustion engines

#### **Reactions:**

Anode: H2 + OH - -> 2H20 + 2e (basic)

H2 -> 2H + +2e- (acidic)

Cathode: O2 + 2H2O +4e- -> 4OH-

O2+ 2H+ +2e- ->H2O (acidic)

Overall: H2+O2->H2O

- hydrogen splits into H+ and e- and reacts with OH- in electrolyte to form water
- O2 reacts with water to replenish OH- in electrolyte, PH remains constant

# **Balancing alkaline half equations:**

- > 02-> H20
- >> balance normally using KOHES— O2 + 4H+ 4e- → H2O
- → add OH- to cancel out H+—O2 + 4H+ 4OH- + 4e- —> H2O +4OH- (hydroxide and hydrogen form water)
- >> 4e- + O2 +2H2O -> 4OH-

#### **Fuel Cell Electrodes:**

- · conducting
- inert (usually Pt)
- catalytic
- porous to allow H2 and O2 to come in contact with ions in electrolyte (this also increases surface area for reaction)

## **Catalysts:**

- used to increase rate of reaction and current produced
- platinum is anode catalyst
- nickel is cathode catalyst

## **Electrolyte:**

- either a strong acid (HCl) or strong base (KOH)
- semi-permeable to allow only reductant in—if it were permeable to both, they would react in electrolyte and thermal energy would be produced

# **Hydrogen** as a Fuel

- higher energy content than most fossil fuels
- produced zero harmful emissions
- often produced through steam reforming of methane, therefore non renewable but can also be extracted from biogas and hydrolysis of water which is renewable
- difficult to store: liquid hydrogen requires lots of energy to keep as a liquid, compressed hydrogen takes up very high volumes
- · unsafe: burns rapidly

| Advantages                                                | Disadvantages                                               |
|-----------------------------------------------------------|-------------------------------------------------------------|
| more efficient energy conversion than thermal ower plants | require constant energy supply                              |
| no carbon emissions                                       | expensive as technology is still developing                 |
| don't need to be recharged                                | hydrogen is mainly sourced from fossil fuels, non renewable |
| can use a variety of fuels                                | hard to store hydrogen                                      |

# **Applications:**

- electroplating:
  - > aqueous solution of cations of plating metal, cathode is the substance being plated

# **Rates of Reaction**

#### **Collision Theory:**

Particles must collide with sufficient energy and in correct orientation to undergo fruitful collisions

Surface Area: an increase in surface area means that more reactant particles are exposed which increases the frequency of collisions

Concentration/Pressure: increased mol of reactants per volume therefore closer proximity which causes higher collision frequency

Temperature: average kinetic energy of reactants increases (more likely to have Ea) and also increases speed of movement, causing more frequent collisions

Catalyst: provides an alternative pathway with lower activation energy, more particles likely to have Ea for fruitful collision

- can be either homogenous (same physical state) or heterogeneous (different physical state)
- adsorption (forms bonds with molecule to weak intramolecular bonds)—> reaction—>
  desorption—> products released from active site

#### **Measuring ROR:**

change in concentration per unit time (M/s) or colour change, pH



## **Transition State:**

Tthe new arrangement of atoms once the activation energy has been absorbed—occurs at the stage of maximum potential energy



Reaction:  $HO^- + CH_3Br \rightarrow [HO---CH_3---Br]^{\ddagger} \rightarrow CH_3OH + Br^-$ 

# **Open/Closed Systems:**

- open—matter and energy can be exchanged with the surroundings e.g a bushfire
- closed—only energy exchanged with surrounding e.g submarine

# **Equilibrium**



A dynamic state of equilibrium occurs when the rate or the forward and backward reactions are equal—the system will stay at equilibrium unless there is a change to the environment

concentration of products and reactants are constant at equilibrium (but not necessarily the same)

# **Concentration Fraction (Qc)**

- has a different value at each stage of the reaction but is constant at equilibrium (Kc)
- Qc= [products]/[reactants]
  - the larger Kc, the greater the proportion of reactants that have been converted to products

wA + xB = yC + zD

$$Kc = [A]^{w}[B]^{x}$$
$$[C]^{y}[D]^{z}$$

\*if it is between these values there is significant concentration of both reactants and products

- > Kc is unique and will change when the temperature changes
- > exothermic reactions—K decreases as temperature increase
- > endothermic reactions—K increases as temperature increases

# ICE Tables—use when you have initial/final conc

|                               | HA(aq) $=$       | <u></u> H⁺(aq) | + | A <sup>-</sup> (aq) |
|-------------------------------|------------------|----------------|---|---------------------|
| Initial concentration (M)     | 0.150            | 0              |   | 0                   |
| Change (M)                    | -x               | х              |   | X                   |
| Equilibrium concentration (M) | 0.150 – <i>x</i> | Х              |   | Х                   |

# Manipulating Kc in Equations:

- ☐ Equation reversed: reciprocal
- ☐ Coefficients halved: raise to power of 0.5
- ☐ Equations added: multiply

# Le Chatelier's Principle

- if an equilibrium system is subjected to a change, the system will adjust itself to partially oppose the change
  - decreased pressure/concentration will cause reaction to favour site with most mols
  - increase concentration of reactants will drive reaction backwards
  - increase in temperature will favour endothermic reaction
  - removing a reactant will favour forwards reactions
  - catalyst will increase both forward and backwards reactions

#### **Reactant Added:**

$$\begin{array}{c|c} \mathbf{2CO_{2(g)}} & \rightleftharpoons \mathbf{2CO_{(g)}} + \mathbf{O_{2(g)}} \\ \hline & \mathbf{CO_{2(g)}} \, \mathbf{added} \\ \hline & \mathbf{[CO_{2(g)}]} \\ \hline & \mathbf{[CO_{2(g)}]} \\ \hline & \mathbf{[O_{2(g)}]} \\ \hline \end{array}$$

#### **Removing Product:**



<sup>\*</sup>when drawing graphs remember that concentration will increase/ decrease according to mol ratios

Changing pressure: \*adding an inert gas has no effect\*



Time

#### **Dilution:**

All concentrations will sharply decrease at the same time. Reaction proceeds in the direction that produces more particles.

#### **Temperature Change:**

2 
$$SO_{2(g)} + O_{2(g)} \rightleftharpoons 2 SO_{3(g)} + energy$$

temperature decreased

$$[SO_{2(g)}]$$

$$[O_{2(g)}]$$

$$[SO_{3(g)}]$$



## **Catalyst:**



# **Optimising Yield**

- needs a balance of high reaction rates and high equilibrium yield
- reaction rate: high concentration, high temp, high surface area, catalyst
- *high equilibrium yield:* low temp for exothermic, high temp for endothermic, addition of excess reactants, removal of product as it forms
- percentage yield: actual yield/theoretical yield

# **Electrolysis**

converting electrical energy into chemical energy—using a power source to allow non-spontaneous reactions

> usually takes place in one container as a non-spontaneous reaction is involved

#### **Molten NaCl**

- must be molten as H2O would be preferentially oxidised
- cathode (-): Na+ + e- —> Na(I)—this is connected to negative power supply which pushes electrons to this electrode
- anode (+): 2Cl- -> Cl2 +2e- -connected to positive power supply which pushes its electrons to the cathode



\*always list out all species present to determine strongest oxidant and reactant (this can be water in aqueous solutions) except for the cathode material

# **Faraday's Laws**

Q= I x T (coulombs, current (amps), time (seconds))

• the charge of 1 mol of electrons= 96500C

e.g A silver plating cell operates at 30A for 20 minutes, what mass of silver is produced?

$$\Rightarrow$$
 Q = 30 x 20 x 60 = 3.6 x 10^4 C

$$>$$
 n(Ag) = n(e)

$$> m(Ag) = 40.3g$$